Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.059
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717980

RESUMO

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Assuntos
Antivenenos , Testes de Neutralização , Antivenenos/farmacologia , Antivenenos/imunologia , Animais , México , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/imunologia , Viperidae , Crotalus , Venenos de Crotalídeos/imunologia
2.
Braz J Biol ; 84: e279474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747862

RESUMO

Variability in snake venom composition is well-documented and crucial for understanding snake ecology and predicting snakebites. In this study, we characterize the venom composition and biological activities of newborn female and male Bothrops moojeni and their mother. Our results reveal significant differences between the venom of newborn females and males, demonstrating a broad and diverse range of proteins. The venoms of newborn females showed higher serine protease effects, increased hemorrhagic activity, and greater lethality compared to the venom of newborn males. However, no differences were observed in phospholipase A2 and coagulant activity. The differences in protein composition and toxic activities between maternal and neonatal venom, as well as between the venoms of newborn females and males, contribute to understanding the diverse outcomes of snakebites. These results underscore the importance of considering sex and ontogeny in understanding venom composition in snakes.


Assuntos
Animais Recém-Nascidos , Bothrops , Venenos de Crotalídeos , Animais , Bothrops/classificação , Bothrops/fisiologia , Feminino , Masculino , Fatores Sexuais
3.
Toxicon ; 243: 107746, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704124

RESUMO

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Assuntos
Antineoplásicos , Movimento Celular , Venenos de Crotalídeos , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Antineoplásicos/farmacologia , Crotalus , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais
4.
Toxicon ; 243: 107742, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38705486

RESUMO

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Assuntos
Inibidores da Angiogênese , Bothrops , Proliferação de Células , Venenos de Crotalídeos , Neoplasias Pulmonares , Animais , Humanos , Inibidores da Angiogênese/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fosfolipases A2/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células A549 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Serpentes Peçonhentas
5.
J Emerg Med ; 66(5): e601-e605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702243

RESUMO

BACKGROUND: A minority of snake envenomations in the United States involve non-native snakes. In this report, we describe what we believe is the first documented human envenoming from an emerald horned pitviper, Ophryacus smaragdinus. CASE REPORT: A previously healthy 36-year-old woman was bitten on her left index finger by a captive emerald horned pitviper she was medicating at work. Swelling to the entire hand was present on emergency department arrival. She had no systemic symptoms and her initial laboratory studies were unremarkable. The affected limb was elevated. We administered five vials of Antivipmyn TRIⓇ (Bioclon), which specifically lists Ophryacus among the envenomations for which it is indicated. She developed pruritus and was treated with IV diphenhydramine and famotidine. Her swelling improved, but her repeat laboratory studies were notable for a platelet count of 102 K/µL and a fibrinogen level of 116 mg/dL. She declined additional antivenom because of the previous allergic reaction. She was admitted for further monitoring and pain control. Subsequent laboratory tests were better, but a small hemorrhagic bleb developed at the bite site. She was discharged the next day and followed up as an outpatient. Her swelling had resolved, her bleb had healed, and her laboratory studies continued to improve. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians may be required to treat bites from non-native snakes. Many of these bites will warrant treatment with non-U.S. Food and Drug Administration-approved antivenoms. Consultation with a regional poison center or medical toxicologist may be necessary to procure the proper antivenom.


Assuntos
Antivenenos , Mordeduras de Serpentes , Feminino , Humanos , Adulto , Mordeduras de Serpentes/complicações , Antivenenos/uso terapêutico , Animais , Crotalinae , Venenos de Crotalídeos
6.
Toxicon ; 242: 107711, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583578

RESUMO

Crotalus neutralizing factor (CNF) is an endogenous glycoprotein from Crotalus durissus terrificus snake blood that inhibits secretory phospholipases A2 (sPLA2) from the Viperid but not from Elapid venoms (subgroups IA and IIA, respectively). In the present study, we demonstrated that CNF can inhibit group III-PLA2 from bee venom by forming a stable enzyme-inhibitor complex. This finding opens up new possibilities for the potential use of CNF and/or CNF-based derivatives in the therapeutics of bee stings.


Assuntos
Venenos de Abelha , Crotalus , Serpentes Peçonhentas , Animais , Venenos de Abelha/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Abelhas , Fosfolipases A2 , Glicoproteínas/farmacologia , Fosfolipases A2 Secretórias/antagonistas & inibidores
7.
J Ethnopharmacol ; 330: 118188, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608797

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY: This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS: The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS: The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 µg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS: JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.


Assuntos
Bothrops , Venenos de Crotalídeos , Emulsões , Necrose , Extratos Vegetais , Folhas de Planta , Cicatrização , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cicatrização/efeitos dos fármacos , Folhas de Planta/química , Venenos de Crotalídeos/toxicidade , Camundongos , Masculino , Necrose/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/patologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células 3T3 , Hemólise/efeitos dos fármacos , Ratos Wistar , Nanopartículas/química , Serpentes Peçonhentas
8.
Toxicon ; 243: 107716, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614247

RESUMO

The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the ß-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.


Assuntos
Bothrops , Venenos de Crotalídeos , Macrófagos , Óxido Nítrico , Fagocitose , Transdução de Sinais , Zimosan , Animais , Fagocitose/efeitos dos fármacos , Zimosan/farmacologia , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Fosfolipases A2 Secretórias/metabolismo
9.
J Am Anim Hosp Assoc ; 60(3): 114-119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662995

RESUMO

Snake envenomation is relatively common in small animals, particularly in endemic areas. Effects and outcomes of envenomation during pregnancy are poorly described in humans and more so in veterinary patients. Two young pregnant female dogs presented to a university teaching hospital with a history of acute soft tissue swelling and bleeding. History, physical examination findings, and diagnostics were consistent with envenomation by crotalid snakes. Medical management of one of the dogs included administration of antivenin. Both dogs survived envenomation with minimal complications and went on to whelp without complications, and all fetuses survived. This is the first description of the management of pit viper envenomation in pregnant dogs.


Assuntos
Antivenenos , Doenças do Cão , Mordeduras de Serpentes , Animais , Cães , Mordeduras de Serpentes/veterinária , Mordeduras de Serpentes/terapia , Mordeduras de Serpentes/complicações , Feminino , Gravidez , Doenças do Cão/etiologia , Doenças do Cão/patologia , Antivenenos/uso terapêutico , Complicações na Gravidez/veterinária , Venenos de Crotalídeos/intoxicação , Venenos de Crotalídeos/toxicidade , Viperidae
10.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668612

RESUMO

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Assuntos
Bothrops , Venenos de Crotalídeos , Gânglios Espinais , Hiperalgesia , Receptores da Neurocinina-1 , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Venenos de Crotalídeos/toxicidade , Masculino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Receptores da Neurocinina-1/metabolismo , Minociclina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos Sprague-Dawley
11.
Toxins (Basel) ; 16(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668626

RESUMO

Green pit viper bites induce mild toxicity with painful local swelling, blistering, cellulitis, necrosis, ecchymosis and consumptive coagulopathy. Several bite cases of green pit vipers have been reported in several south-east Asian countries including the north-eastern region of India. The present study describes isolation and characterization of a haemostatically active protein from Trimeresurus erythrurus venom responsible for coagulopathy. Using a two-step chromatographic method, a snake venom serine protease erythrofibrase was purified to homogeneity. SDS-PAGE of erythrofibrase showed a single band of ~30 kDa in both reducing and non-reducing conditions. The primary structure of erythrofibrase was determined by ESI LC-MS/MS, and the partial sequence obtained showed 77% sequence similarity with other snake venom thrombin-like enzymes (SVTLEs). The partial sequence obtained had the typical 12 conserved cysteine residues, as well as the active site residues (His57, Asp102 and Ser195). Functionally, erythrofibrase showed direct fibrinogenolytic activity by degrading the Aα chain of bovine fibrinogen at a slow rate, which might be responsible for causing hypofibrinogenemia and incoagulable blood for several days in envenomated patients. Moreover, the inability of Indian polyvalent antivenom (manufactured by Premium Serum Pvt. Ltd., Maharashtra, India) to neutralize the thrombin-like and plasmin-like activity of erythrofibrase can be correlated with the clinical inefficacy of antivenom therapy. This is the first study reporting an α-fibrinogenase enzyme erythrofibrase from T. erythrurus venom, which is crucial for the pathophysiological manifestations observed in envenomated victims.


Assuntos
Venenos de Crotalídeos , Fibrinogênio , Trimeresurus , Animais , Índia , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/química , Fibrinogênio/metabolismo , Fibrinogênio/química , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Sequência de Aminoácidos , Mordeduras de Serpentes/tratamento farmacológico
12.
Proc Natl Acad Sci U S A ; 121(16): e2313440121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578985

RESUMO

Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.


Assuntos
Venenos de Crotalídeos , Serpentes Peçonhentas , Animais , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/metabolismo , Epigenômica , Crotalus/genética , Crotalus/metabolismo
13.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668613

RESUMO

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Assuntos
Coagulação Sanguínea , Venenos de Crotalídeos , Fucus , Fosfolipases A2 , Polissacarídeos , Undaria , Animais , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Bothrops jararaca , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/enzimologia , Algas Comestíveis/química , Fucus/química , Fosfolipases A2/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Proteólise/efeitos dos fármacos , Alga Marinha/química , Undaria/química , Serpentes Peçonhentas
14.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583853

RESUMO

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Assuntos
Adesão Celular , Citocinas , Células Endoteliais da Veia Umbilical Humana , Metaloproteases , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Citocinas/metabolismo , Metaloproteases/metabolismo , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Bothrops/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/toxicidade , Proteólise/efeitos dos fármacos
15.
Toxicon ; 242: 107704, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565396

RESUMO

Members of the genus Protobothrops are amongst the more than twenty-eight range-restricted Indian pit viper species. Their bites and envenomings are rarely documented from India. Pit viper envenomings can be challenging to treat in the Indian setting, since available antivenoms do not satisfactorily neutralize their venoms. Herein, we present the first Indian reports on bites and envenoming by Protobothrops jerdonii and Protobothrops himalayanus resulting in local effects, coagulopathy and acute kidney injury in the case of the former and possible mild, isolated coagulopathy in the case of the latter; and discuss management-related challenges in the context of absent specific antivenoms.


Assuntos
Antivenenos , Venenos de Crotalídeos , Crotalinae , Centros de Controle de Intoxicações , Mordeduras de Serpentes , Mordeduras de Serpentes/terapia , Índia , Animais , Humanos , Antivenenos/uso terapêutico , Masculino , Injúria Renal Aguda/terapia , Adulto , Feminino , Pessoa de Meia-Idade
16.
Toxins (Basel) ; 16(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535818

RESUMO

The protein profile of Bothrops rhombeatus venom was compared to Bothrops asper and Bothrops atrox, and the effectiveness of antivenoms from the National Institute of Health of Colombia (INS) and Antivipmyn-Tri (AVP-T) of Mexico were analyzed. Protein profiles were studied with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and reverse-phase high-performance liquid chromatography (RP-HPLC). The neutralizing potency and the level of immunochemical recognition of the antivenoms to the venoms were determined using Western blot, affinity chromatography, and enzyme-linked immunosorbent assay (ELISA). Bands of phospholipase A2 (PLA2), metalloproteinases (svMPs) I, II, and III as well as serine proteinases (SPs) in the venom of B. rhombeatus were recognized by SDS-PAGE. With Western blot, both antivenoms showed immunochemical recognition towards PLA2 and svMP. INS showed 94% binding to B. rhombeatus venom and 92% to B. asper while AVP-T showed 90.4% binding to B. rhombeatus venom and 96.6% to B. asper. Both antivenoms showed binding to PLA2 and svMP, with greater specificity of AVP-T towards B. rhombeatus. Antivenom neutralizing capacity was calculated by species and mL of antivenom, finding the following for INS: B. asper 6.6 mgV/mL, B. atrox 5.5 mgV/mL, and B. rhombeatus 1.3 mgV/mL. Meanwhile, for AVP-T, the following neutralizing capacities were found: B. asper 2.7 mgV/mL, B. atrox 2.1 mgV/mL, and B. rhombeatus 1.4 mgV/mL. These results show that both antivenoms presented similarity between calculated neutralizing capacities in our trial, reported in a product summary for the public for the B. asper species; however, this does not apply to the other species tested in this trial.


Assuntos
Antivenenos , Venenos de Crotalídeos , Animais , Academias e Institutos , Western Blotting , Bothrops asper , Bothrops atrox
17.
Biomolecules ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540699

RESUMO

Viperid snake venoms induce severe tissue damage, characterized by the direct toxic action of venom components, i.e., phospholipases A2 (PLA2s) and metalloproteinases (SVMPs), concomitantly with the onset of endogenous inflammatory processes, in an intricate scenario of tissue alterations. Understanding the expression of relevant genes in muscle tissue will provide valuable insights into the undergoing pathological and inflammatory processes. In this study, we have used the Nanostring technology to evaluate the patterns of gene expression in mouse skeletal muscle 1 h, 6 h, and 24 h after injection of the venoms of Bothrops asper and Daboia russelii, two medically relevant species in Latin America and Asia, respectively, with somewhat different clinical manifestations. The dose of venoms injected (30 µg) induced local pathological effects and inflammation in muscle tissue. We focused our analysis on genes related to extracellular matrix (ECM) metabolism, immune system, programmed cell death, and autophagy. The results revealed a complex pattern of expression of genes. Regarding ECM metabolism and regulation, up-regulated genes included proteinase inhibitor Serpine 1, thrombospondin 1, collagens 1A1 and 4A1 (at 1 h in the case of B. asper), TIMP1, MMP-3 (at 24 h), and lysil oxidase (LOX). In contrast, collagen chains 5A3 and 5A1 were down-regulated, especially at 6 h. Transforming growth factor ß (TGF-ß) and several genes related to myofibroblast regulation were also up-regulated, which might be related to the development of fibrosis. Several genes related to cytokine and chemokine synthesis and regulation and NFκB signaling were also up-regulated. Our observations show a variable expression of genes associated with programmed cell death and autophagy, thus revealing a hitherto unknown role of autophagy in tissue affected by snake venoms. These results provide clues to understanding the complex pattern of gene expression in tissue affected by viperid snake venoms, which likely impacts the final pathophysiology of damaged tissue in envenomings.


Assuntos
Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Camundongos , Antivenenos , Mordeduras de Serpentes/genética , Venenos de Serpentes , Venenos de Crotalídeos/farmacologia , Músculos , Colágeno
18.
J Nat Prod ; 87(4): 820-830, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38449376

RESUMO

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura Molecular
19.
Blood Coagul Fibrinolysis ; 35(4): 167-172, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477828

RESUMO

BACKGROUND: The Western diamondback rattlesnake ( Crotalus atrox ) is a medically important venomous snake in the Southwestern United States, injuring humans, and their companion animals. The goals of this investigation were to utilize a rabbit model of subcutaneous envenomation to assess Crotalus atrox venom coagulopathy and determine the efficacy of a ruthenium-containing antivenom (RA) in attenuating it. METHODS: Sedated New Zealand White rabbits had viscoelastic measurements of whole blood coagulation kinetics obtained from ear artery samples. Crotalus atrox venom (4 mg/kg) was injected subcutaneously and changes in coagulation determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had site-directed RA injected 5 min after venom injection. RESULTS: A significant decrease in the velocity of clot growth and thrombus strength was observed in animals injected with venom alone. Site-directed administration of RA resulted in no change in coagulation over the 3 h following venom injection. The interaction of antivenom administration and time was significantly different in the cases of clot growth velocity and strength. CONCLUSIONS: A novel rabbit model was used to define the toxicodynamic profile of coagulopathy of Crotalus atrox venom and demonstrate the efficacy of RA. Future investigation is planned involving other medically important venoms and RA administration.


Assuntos
Antivenenos , Transtornos da Coagulação Sanguínea , Venenos de Crotalídeos , Crotalus , Serpentes Peçonhentas , Animais , Coelhos , Antivenenos/farmacologia , Antivenenos/uso terapêutico , Venenos de Crotalídeos/farmacologia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças
20.
Toxicon ; 242: 107689, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531479

RESUMO

Green pit vipers are one of the most widely distributed group of venomous snakes in south-east Asia. In Indian, green pit vipers are found in the Northern and North-eastern states spreading across eastern and central India and one of the lesser studied venoms. High morphological similarity among them has been a long-established challenge for species identification, however, a total of six species of Indian green pit viper belonging to genus Trimeresurus, Popeia and Viridovipera has been reported from North-east India. Biochemical and biological studies have revealed that venom exhibits substantial variation in protein expression level along with functional variability. The symptoms of envenomation are painful swelling at bite site, bleeding, necrosis along with systemic toxicity such as prolonged coagulopathy. Clinical data of green pit viper envenomated patients from Demow community health centre, Assam advocated against the use of Indian polyvalent antivenom pressing the need for a suitable antivenom for the treatment of green pit viper envenomation. To design effective and specific antivenom for green pit vipers, unveiling the proteome profile of these snakes is needed. In this study, a comparative venomic of green pit vipers of Northern and North-eastern India, their clinical manifestation as well as treatment protocol has been reviewed.


Assuntos
Venenos de Crotalídeos , Mordeduras de Serpentes , Trimeresurus , Animais , Humanos , Antivenenos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...