Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.418
Filtrar
1.
Food Chem ; 462: 140909, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208727

RESUMO

Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.


Assuntos
Caseínas , Emulsões , Lactobacillus plantarum , Polissacarídeos Bacterianos , Probióticos , Emulsões/química , Probióticos/química , Polissacarídeos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurização , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Composição de Medicamentos , Digestão , Armazenamento de Alimentos
2.
Food Chem ; 462: 140916, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216372

RESUMO

Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.


Assuntos
Cerveja , Fermentação , Probióticos , Paladar , Compostos Orgânicos Voláteis , Cerveja/análise , Cerveja/microbiologia , Probióticos/metabolismo , Probióticos/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Humanos , Digestão , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Viabilidade Microbiana
3.
Methods Mol Biol ; 2852: 105-122, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235739

RESUMO

In food industry, Listeria monocytogenes contamination can occur accidentally despite the quality control of raw materials and factory. Decontamination processes or inhibitory effects of ingredients/additives in food products are set up to ensure compliance with hygiene and microbiological criteria. These actions represent stresses for the pathogenic agent, causing fluctuations in its physiological states. Moreover, during these environmental stresses, Listeria monocytogenes can enter in a viable but nonculturable (VBNC) state which is not detected by plate counting but by flow cytometry. This technique coupled with cell staining by fluorescent dyes offers the possibility to assess different physiological states based on different cellular parameters: enzymatic activity, transmembrane integrity, membrane potential, and respiratory activity. In this chapter, we present a method to assess the viability of foodborne pathogens using a double-staining principle based on the assessment of membrane integrity and intracellular esterase activity.


Assuntos
Citometria de Fluxo , Listeria monocytogenes , Viabilidade Microbiana , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Citometria de Fluxo/métodos , Microbiologia de Alimentos/métodos , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Membrana Celular/metabolismo
4.
Methods Mol Biol ; 2852: 33-46, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235735

RESUMO

Foodborne pathogens are responsible for foodborne diseases and food poisoning and thus pose a great threat to food safety. These microorganisms can adhere to surface and form a biofilm composed of an extracellular matrix. This matrix protects bacterial cells from industrial environmental stress factors such as cleaning and disinfection operations. Moreover, during these environmental stresses, many bacterial species can be entered in a viable but nonculturable (VBNC) state. VBNC cells are characterized by an active metabolism and a loss of cultivability on conventional bacteriological agar. This leads to an underestimation of total viable cells in environmental samples and thus may pose a risk for public health. In this chapter, we present a method to detect viable population of foodborne pathogens in industrial environmental samples using a molecular method combining propidium monoazide (PMA) and quantitative PCR (qPCR) and a fluorescence microscopic method associated with the LIVE/DEAD BacLight™ viability stain.


Assuntos
Azidas , Microbiologia de Alimentos , Viabilidade Microbiana , Propídio , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia de Alimentos/métodos , Azidas/química , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Microscopia de Fluorescência/métodos , Humanos
5.
Methods Mol Biol ; 2852: 123-134, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235740

RESUMO

Properly using controllable atmospheric containers can facilitate investigations of the survival abilities and physiological states of key and emerging-foodborne pathogens under recreated applicable food processing environmental conditions. Notably, saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Viabilidade Microbiana , Bactérias/crescimento & desenvolvimento , Humanos
6.
Nat Commun ; 15(1): 8499, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358320

RESUMO

Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.


Assuntos
Parede Celular , Listeria monocytogenes , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/fisiologia , Animais , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Embrião de Galinha , Listeriose/microbiologia , Viabilidade Microbiana , Virulência , Listeria/genética , Humanos
7.
Compr Rev Food Sci Food Saf ; 23(5): e70012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39230390

RESUMO

Recent advancements in modeling suggest that microbial inactivation in leafy greens follows a nonlinear pattern, rather than the simple first-order kinetics. In this study, we evaluated 17 inactivation models commonly used to describe microbial decline and established the conditions that govern microbial survival on leafy greens. Through a systematic review of 65 articles, we extracted 530 datasets to model the fate of Shiga toxin-producing Escherichia coli O157:H7 on leafy greens. Various factor analysis methods were employed to evaluate the impact of identified conditions on survival metrics. A two-parameter model (jm2) provided the best fit to most of both natural and antimicrobial-induced persistence datasets, whereas the one-parameter exponential model provided the best fit to less than 20% of the datasets. The jm2 model (adjusted R2 = .89) also outperformed the exponential model (adjusted R2 = .58) in fitting the pooled microbial survival data. In the context of survival metrics, the model averaging approach generated higher values than the exponential model for >4 log reduction times (LRTs), suggesting that the exponential model may be overpredicting inactivation at later time points. The random forest technique revealed that temperature and inoculum size were common factors determining inactivation in both natural and antimicrobial-induced die-offs.. The findings show the limitations of relying on the first-order survival metric of 1 LRT and considering nonlinear inactivation in produce safety decision-making.


Assuntos
Escherichia coli O157 , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos , Verduras/microbiologia , Viabilidade Microbiana , Folhas de Planta/microbiologia , Folhas de Planta/química
8.
Front Cell Infect Microbiol ; 14: 1431141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268484

RESUMO

Introduction: Our work aims at establishing a proof-of-concept for a method that allows the early prediction of the bactericidal and bacteriostatic effects of antibiotics on bacteria using scanning electron microscopy (SEM) as compared to traditional culture-based methods. Methods: We tested these effects using Imipenem (bactericidal) and Doxycycline (bacteriostatic) with several strains of sensitive and resistant Escherichia coli. We developed a SEM-based predictive score based on three main criteria: Bacterial Density, Morphology/Ultrastructure, and Viability. We determined the results for each of these criteria using SEM micrographs taken with the TM4000Plus II-Tabletop-SEM (Hitachi, Japan) following an optimized, rapid, and automated acquisition and analysis protocol. We compared our method with the traditional culture colony counting gold standard method and classic definitions of the two effects. Results: Our method revealed total agreement with the CFU method and classic definition by visualizing the effect of the antibiotic at 60 minutes and 120 minutes using SEM. Discussion: This early prediction allows a rapid and early identification of the bactericidal and bacteriostatic effects as compared to culture that would take a minimum of 18 hours. This has several future applications in the development of SEM-automated assays coupled to machine learning models that identify the antibiotic effect and facilitate determination of bacterial susceptibility.


Assuntos
Antibacterianos , Doxiciclina , Escherichia coli , Imipenem , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Antibacterianos/farmacologia , Imipenem/farmacologia , Doxiciclina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Contagem de Colônia Microbiana
9.
Front Cell Infect Microbiol ; 14: 1426791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268490

RESUMO

Background: In the face of increasing antifungal resistance among Candida albicans biofilms, this study explores the efficacy of a combined treatment using Kangbainian lotion (KBN) and miconazole nitrate (MN) to address this challenge. Methods: Using UPLC-Q-TOF/MS Analysis for Identification of Active Compounds in KBN Lotion; FICI for synergy evaluation, XTT and ROS assays for biofilm viability and oxidative stress, fluorescence and confocal laser scanning microscopy (CLSM) for structural and viability analysis, and real-time fluorescence for gene expression. Conclusion: Our study indicates that the combined application of KBN and MN somewhat impacts the structural integrity of Candida albicans biofilms and affects the expression of several key genes involved in biofilm formation, including ALS1, ALS3, HWP1, HSP90, and CSH1. These preliminary findings suggest that there may be a synergistic effect between KBN and MN, potentially influencing not only the structural aspects of fungal biofilms but also involving the modulation of genetic pathways during their formation.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Farmacorresistência Fúngica , Sinergismo Farmacológico , Miconazol , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Miconazol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos
10.
Sci Rep ; 14(1): 20678, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237570

RESUMO

The primary aim of this study was to investigate the impact of treatment with low-temperature plasma (LTP) for varying exposure durations on a multispecies cariogenic biofilm comprising C. albicans, L. casei, and S. mutans, as well as on single-species biofilms of L. casei and C. albicans, cultured on hydroxyapatite discs. Biofilms were treated with LTP-argon at a 10 mm distance for 30 s, 60 s, and 120 s. Chlorhexidine solution (0.12%) and NaCl (0.89%) were used as positive (PC) and negative controls (NC), respectively. Argon flow only was also used as gas flow control (F). Colony-forming units (CFU) recovery and confocal laser scanning microscopy (CLSM) were used to analyze biofilm viability. LTP starting at 30 s of application significantly reduced the viability of multispecies biofilms by more than 2 log10 in all treated samples (p < 0.0001). For single-species biofilms, L. casei showed a significant reduction compared to PC and NC of over 1 log10 at all exposure times (p < 0.0001). In the case of C. albicans biofilms, LTP treatment compared to PC and NC resulted in a significant decrease in bacterial counts when applied for 60 and 120 s (1.55 and 1.90 log10 CFU/mL, respectively) (p < 0.0001). A significant effect (p ≤ 0.05) of LTP in single-species biofilms was observed to start at 60 s of LTP application compared to F, suggesting a time-dependent effect of LTP for the single-species biofilms of C. albicans and L. casei. LTP is a potential mechanism in treating dental caries by being an effective anti-biofilm therapy of both single and multispecies cariogenic biofilms.


Assuntos
Biofilmes , Candida albicans , Gases em Plasma , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Candida albicans/fisiologia , Candida albicans/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Cárie Dentária/microbiologia , Cárie Dentária/terapia , Lacticaseibacillus casei/fisiologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Temperatura Baixa
11.
Sci Rep ; 14(1): 20843, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242800

RESUMO

The preservation of microorganisms is pivotal in microbiological practice. Currently, cryopreservation is assumed to be an effective and inexpensive approach for the storage of microorganisms, including bacteria. The key point of cryopreservation is optimal cryoprotectant selection. In the present study, different cryoprotectant compositions were tested for long-term storage of 15 Enterobacterales bacterial strains at - 20 °C. The survival rates of the bacterial strains were evaluated in four different cryoprotectant solutions containing 70% glycerin only (cryoprotectants 1 and 4), 10% dimethyl sulfoxide (DMSO) with 70% glycerin (cryoprotectant 2), and 10% DMSO (cryoprotectant 3). In addition, cryoprotectants 1 and 2 contained peptone and yeast extract as nutritional supplements. The general survival rates of the bacterial strains were evaluated after 12 months of storage. After 12 months, the survival rates of the different cryoprotectants were as follows: cryoprotectant 1-88.87%; cryoprotectant 2-84.85%; cryoprotectant 3-83.50%; and cryoprotectant 4-44.81%. Thus, the composition of cryoprotectant 1 (70% glycerin with nutrient supplements) was optimal for preserving 15 tested strains of the order Enterobacterales. Despite these findings, the biochemical properties of the tested strains changed after cryopreservation for 12 months in the presence of 1 or 3 cryoprotectants. Alterations in the biochemical profile could be related to changes in environmental conditions and cold adaptation. We assume that the composition of cryoprotectant 1 can be optimal for storing the order Enterobacterales at - 20 °C. However, further investigations are needed to elucidate the problem of cryopreservation and to support our assumption.


Assuntos
Criopreservação , Crioprotetores , Enterobacteriaceae , Viabilidade Microbiana , Crioprotetores/farmacologia , Criopreservação/métodos , Viabilidade Microbiana/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Dimetil Sulfóxido/farmacologia , Glicerol/farmacologia
12.
BMC Microbiol ; 24(1): 324, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243004

RESUMO

Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1ß, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Virulência , Camundongos , Humanos , Infecções por Acinetobacter/microbiologia , Células A549 , Antibacterianos/farmacologia , Feminino , Citocinas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
13.
Microb Biotechnol ; 17(9): e70005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268832

RESUMO

Agricultural yields are often limited by damage caused by pathogenic microorganisms, including plant-pathogenic bacteria. The chemical control options to cope with bacterial diseases in agriculture are limited, predominantly relying on copper-based products. These compounds, however, possess limited efficacy. Therefore, there is an urgent need to develop novel technologies to manage bacterial plant diseases and reduce food loss. In this study, a new antimicrobial agent was developed using a doping method that entraps small bioactive organic molecules inside copper as the metal matrix. The food preservative agent lauroyl arginate ethyl ester (ethyl lauroyl arginate; LAE) was chosen as the doped organic compound. The new composites were termed LAE@[Cu]. Bactericidal assays against Acidovorax citrulli, a severe plant pathogen, revealed that LAE and copper in the composites possess a synergistic interaction as compared with each component individually. LAE@[Cu] composites were further characterised in terms of chemical properties and in planta assays demonstrated their potential for further development as crop protection agents.


Assuntos
Cobre , Proteção de Cultivos , Doenças das Plantas , Cobre/química , Cobre/farmacologia , Proteção de Cultivos/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Arginina/química , Arginina/farmacologia , Arginina/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Viabilidade Microbiana/efeitos dos fármacos
14.
Lab Chip ; 24(19): 4659-4668, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39228336

RESUMO

Escherichia coli O157:H7 is a major foodborne pathogen that poses a significant threat to food safety and human health. Rapid and sensitive detection of viable Escherichia coli O157:H7 can effectively prevent food poisoning. Here, we developed a microwell-confined and propidium monoazide-assisted digital CRISPR microfluidic platform for rapid and sensitive detection of viable Escherichia coli O157:H7 in food samples. The reaction time is significantly reduced by minimizing the microwell volume, yielding qualitative results in 5 min and absolute quantitative results in 15 min. With the assistance of propidium monoazide, this platform can eliminate the interference from 99% of dead Escherichia coli O157:H7. The direct lysis method obviates the need for a complex nucleic acid extraction process, offering a limit of detection of 3.6 × 101 CFU mL-1 within 30 min. Our results demonstrated that the platform provides a powerful tool for rapid detection of Escherichia coli O157:H7 and provides reliable guidance for food safety testing.


Assuntos
Azidas , Escherichia coli O157 , Propídio , Escherichia coli O157/isolamento & purificação , Azidas/química , Propídio/química , Propídio/análogos & derivados , Técnicas Analíticas Microfluídicas/instrumentação , Microbiologia de Alimentos/instrumentação , Dispositivos Lab-On-A-Chip , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Viabilidade Microbiana , Limite de Detecção
15.
Immun Inflamm Dis ; 12(9): e70012, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39240051

RESUMO

BACKGROUNDS: Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis, secretes a multitude of proteins that modulate the host's immune response to ensure its own persistence. The region of difference (RD) genes encoding proteins play key roles in TB immunity and pathogenesis. Nevertheless, the roles of the majority of RD-encoded proteins remain to be elucidated. OBJECTS: To elucidate the role of Rv2652c located in RD13 in Mtb on bacterial growth, bacterial survival, and host immune response. METHODS: We constructed the strain MS_Rv2652c which over-expresses Mtb RD-encoding protein Rv2652c in M. smegmatis (MS), and compared it with the wild strain in the bacterial growth, bacterial survival, virulence of Rv2652c, and determined the effect of MS_Rv2652c on host immune response in macrophages. RESULTS: Rv2652c protein is located at cell wall of MS_Rv2652c strain and also an integral component of the Mtb H37Rv cell wall. Rv2652c can enhance the resistance of recombinant MS to various stressors. Moreover, Rv2652c inhibits host proinflammatory responses via modulation of the NF-κB pathway, thereby promoting Mtb survival in vitro and in vivo. CONCLUSION: Our data suggest that cell wall protein Rv2652c plays an important role in creating a favorable environment for bacterial survival by modulating host signals and could be established as a potential TB drug target.


Assuntos
Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Humanos , Interações Hospedeiro-Patógeno/imunologia , Virulência , Mycobacterium smegmatis/imunologia , Viabilidade Microbiana/imunologia , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Parede Celular/imunologia , Parede Celular/metabolismo
16.
Viruses ; 16(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39339906

RESUMO

Bacteriophages have been proposed as biological controllers to protect plants against different bacterial pathogens. In this scenario, one of the main challenges is the low viability of phages in plants and under adverse environmental conditions. This work explores the use of 12 compounds and 14 different formulations to increase the viability of a phage mixture that demonstrated biocontrol capacity against Pseudomonas syringae pv. actinidiae (Psa) in kiwi plants. The results showed that the viability of the phage mixture decreases at 44 °C, at a pH lower than 4, and under UV radiation. However, using excipients such as skim milk, casein, and glutamic acid can prevent the viability loss of the phages under these conditions. Likewise, it was demonstrated that the use of these compounds prolongs the presence of phages in kiwi plants from 48 h to at least 96 h. In addition, it was observed that phages remained stable for seven weeks when stored in powder with skim milk, casein, or sucrose after lyophilization and at 4 °C. Finally, the phages with glutamic acid, sucrose, or skim milk maintained their antimicrobial activity against Psa on kiwi leaves and persisted within kiwi plants when added through roots. This study contributes to overcoming the challenges associated with the use of phages as biological controllers in agriculture.


Assuntos
Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/virologia , Pseudomonas syringae/efeitos dos fármacos , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Agricultura/métodos , Actinidia/química , Bacteriófagos/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Agentes de Controle Biológico/farmacologia , Excipientes/química , Excipientes/farmacologia , Folhas de Planta/virologia , Folhas de Planta/química
17.
Curr Microbiol ; 81(11): 355, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278982

RESUMO

Chlorine and its derivatives have been used as an antibacterial agent to reduce Salmonella contamination in poultry meat during processing. We evaluated the survival of 4 different Salmonella serotypes (Typhimurium, Enteritidis, Heidelberg, and Gaminara) in the presence of 50 ppm sodium hypochlorite (NaOCl) alone or with the addition of thiourea (radical scavenger) or Dip (iron chelator) to determine the contribution of reactive oxygen species (ROS) in the bactericidal activity of NaOCl. The result showed that for all four serotypes the addition of thiourea or Dip significantly increased the % survival as compared to the respective NaOCl treatment groups, while it was significantly higher with thiourea as compared to Dip (P < 0.05). We also evaluated the survival of 11 deletion mutants of S. Typhimurium, which were demonstrated to increase (∆atpC, ∆cyoA, ∆gnd, ∆nuoG, ∆pta, ∆sdhC, and ∆zwf) or decrease the production of ROS (∆edd, ∆fumB, ∆pykA, and ∆tktB) in Escherichia coli (E. coli), in the presence of 50 ppm. The results showed that only two (∆sdhC and ∆zwf) out of 7 ROS-increasing mutants showed reduced % survival as compared to the wild-type (P < 0.05), while all four deletion ROS-decreasing mutants showed significantly higher % survival as compared to the wild-type (P < 0.05). This work suggests that the production of ROS is a major component of the bactericidal activity of NaOCl against Salmonella serotypes and there might be a significant difference in the metabolic pathways involved in ROS production between Salmonella and E. coli.


Assuntos
Antibacterianos , Espécies Reativas de Oxigênio , Salmonella , Espécies Reativas de Oxigênio/metabolismo , Salmonella/efeitos dos fármacos , Salmonella/genética , Antibacterianos/farmacologia , Hipoclorito de Sódio/farmacologia , Cloro/farmacologia , Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Tioureia/farmacologia , Tioureia/análogos & derivados , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética
18.
Curr Microbiol ; 81(10): 339, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225833

RESUMO

Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.


Assuntos
Bacillus thuringiensis , Bacillus , Desinfetantes , Glutaral , Esporos Bacterianos , Desinfetantes/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Glutaral/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Testes de Sensibilidade Microbiana , o-Ftalaldeído/farmacologia , Bacillus cereus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Desinfecção/métodos
19.
ACS Appl Mater Interfaces ; 16(39): 52878-52893, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39301782

RESUMO

To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.


Assuntos
Alginatos , Lacticaseibacillus casei , Manihot , Microesferas , Probióticos , Lacticaseibacillus casei/química , Alginatos/química , Alginatos/farmacologia , Probióticos/química , Manihot/química , Farinha , Biopolímeros/química , Biopolímeros/farmacologia , Quitosana/química , Quitosana/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
20.
Appl Microbiol Biotechnol ; 108(1): 472, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320527

RESUMO

Xanthomonas arboricola pv. pruni (Xap) is the causal agent of bacterial spot of stone fruits and almond (Prunus spp). Detection of Xap is typically carried out using quantitative real-time PCR (qPCR) combined with culture-based isolation. However, qPCR does not differentiate between viable and dead cells, potentially leading to an overestimation of the infective population in a sample. Such overestimation could result in unnecessary phytosanitary measures. The present study aims to develop a specific protocol ideally targeting to detection of only live Xap bacterial cells. To address this challenge, the viable quantitative PCR (v-qPCR) method was evaluated using three nucleic acid-binding dyes: propidium monoazide (PMA), a combination of PMA and ethidium monoazide (EMA), and PMAxx™, an improved version of PMA. PMAxx™ proved to be the most suitable dye for the detection and quantification of living bacterial cells. This methodology was also evaluated in infected plant material over time and can be considered a rapid and reliable alternative to PCR methods for detecting only those putative infective Xap that may pose a risk for Prunus crops. KEY POINTS: • Protocol to detect biofilm and planktonic viable X. arboricola pv. pruni cells. • Host validated protocol. • Benefits, reduction of chemicals in disease control.


Assuntos
Azidas , Doenças das Plantas , Propídio , Prunus , Reação em Cadeia da Polimerase em Tempo Real , Xanthomonas , Xanthomonas/genética , Xanthomonas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças das Plantas/microbiologia , Propídio/análogos & derivados , Propídio/química , Azidas/química , Prunus/microbiologia , Viabilidade Microbiana , Biofilmes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA