Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.139
Filtrar
1.
Front Immunol ; 15: 1363156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953028

RESUMO

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Assuntos
Proteínas Ligadas por GPI , Herpesvirus Humano 6 , Células Matadoras Naturais , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Herpesvirus Humano 6/imunologia , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Ativação Linfocitária/imunologia , Ligação Proteica , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
2.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959049

RESUMO

Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae.


Assuntos
Genoma Viral , RNA Viral , Animais , RNA Viral/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , Vírion/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Insetos/virologia , Filogenia , Replicação Viral
3.
Subcell Biochem ; 104: 181-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963488

RESUMO

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Assuntos
DNA Viral , Proteínas Virais , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Empacotamento do Genoma Viral/fisiologia , Empacotamento do DNA , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , Genoma Viral
4.
Biomed Res Int ; 2024: 4066641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962403

RESUMO

The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.


Assuntos
Simulação por Computador , Infecções por Henipavirus , Vírus Nipah , Vírus Nipah/imunologia , Humanos , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Vacinas Virais/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Vacinação , Simulação de Acoplamento Molecular , Proteínas Virais/imunologia , Proteínas Virais/química , Proteínas Virais/genética , Animais
5.
Microb Biotechnol ; 17(7): e14513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962879

RESUMO

The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three Acinetobacter baumannii-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/química , Bacteriófagos/fisiologia , Bacteriófagos/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/virologia , Concentração Osmolar , Viabilidade Microbiana/efeitos dos fármacos , Soluções Tampão , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Endopeptidases/metabolismo , Endopeptidases/química
6.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961067

RESUMO

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Neuraminidase , Pandemias , Neuraminidase/imunologia , Neuraminidase/genética , Animais , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H3N2/imunologia , Feminino , Reações Cruzadas/imunologia , Camundongos , Influenza Humana/imunologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Idoso , Vírus da Influenza A Subtipo H2N2/imunologia , Vírus da Influenza A Subtipo H2N2/genética , Masculino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Aves/virologia , Pessoa de Meia-Idade , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Vírus da Influenza A Subtipo H9N2/imunologia , Adulto , Proteínas Virais/imunologia , Proteínas Virais/genética
7.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949191

RESUMO

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mitocôndrias/metabolismo , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Células A549 , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transcriptoma , Fases de Leitura Aberta , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Viroporinas
8.
Front Cell Infect Microbiol ; 14: 1433661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979510

RESUMO

In recent years, the avian influenza virus has emerged as a significant threat to both human and public health. This study focuses on a patient infected with the H10N3 subtype of avian influenza virus, admitted to the Third People's Hospital of Kunming City on March 6, 2024. Metagenomic RNA sequencing and polymerase chain reaction (PCR) analysis were conducted on the patient's sputum, confirming the H10N3 infection. The patient presented severe pneumonia symptoms such as fever, expectoration, chest tightness, shortness of breath, and cough. Phylogenetic analysis of the Haemagglutinin (HA) and neuraminidase (NA) genes of the virus showed that the virus was most closely related to a case of human infection with the H10N3 subtype of avian influenza virus found in Zhejiang Province, China. Analysis of amino acid mutation sites identified four mutations potentially hazardous to human health. Consequently, this underscores the importance of continuous and vigilant monitoring of the dynamics surrounding the H10N3 subtype of avian influenza virus, utilizing advanced genomic surveillance techniques.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Humana , Neuraminidase , Filogenia , Humanos , China/epidemiologia , Influenza Humana/virologia , Neuraminidase/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Mutação , Análise Mutacional de DNA , Animais , Influenza Aviária/virologia , Proteínas Virais/genética , Escarro/virologia , Aves/virologia , Masculino , RNA Viral/genética
9.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981875

RESUMO

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Assuntos
Genoma Viral , Luffa , Fases de Leitura Aberta , Filogenia , Genoma Viral/genética , Luffa/virologia , Animais , China , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Sequenciamento Completo do Genoma , Proteínas Virais/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
10.
Arch Virol ; 169(8): 161, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981885

RESUMO

Here, we report a novel ourmia-like mycovirus, named "Phomopsis asparagi magoulivirus 1" (PaMV1), derived from the phytopathogenic fungus Phomopsis asparagi. The genome of PaMV1 consists of a positive-sense single-stranded RNA (+ ssRNA) that is 2,639 nucleotides in length, with a GC content of 57.13%. It contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 686 amino acids with a molecular mass of 78.57 kDa. Phylogenetic analysis based on RdRp sequences revealed that PaMV1 grouped together with Diaporthe gulyae magoulivirus 1 (DgMV1) in a distinct clade. Sequence comparisons and phylogenetic analysis suggest that PaMV1 is a novel member of the genus Magoulivirus, family Botourmiaviridae.


Assuntos
Micovírus , Genoma Viral , Fases de Leitura Aberta , Phomopsis , Filogenia , RNA Viral , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Phomopsis/virologia , RNA Viral/genética , Sequenciamento Completo do Genoma , RNA Polimerase Dependente de RNA/genética , Composição de Bases , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Sequência de Bases , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação
11.
Front Cell Infect Microbiol ; 14: 1418168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988816

RESUMO

Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Exossomos , Interações Hospedeiro-Patógeno , MicroRNAs , Viroses , Exossomos/metabolismo , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Viroses/metabolismo , Viroses/virologia , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Vírus/patogenicidade , Vírus/metabolismo , Liberação de Vírus , Proteínas Virais/metabolismo , Proteínas Virais/genética
12.
Cell Host Microbe ; 32(7): 1039-1041, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991498

RESUMO

Bacteria have evolved anti-viral defenses, but the mechanisms of sensing and stopping infection are still under investigation. In this issue of Cell Host & Microbe, Mets, Kurata, Ernits et al. describe how direct sensing of a phage protein by a bacterial toxin-antitoxin-associated chaperone unleashes toxin activity to prevent infection.


Assuntos
Bacteriófagos , Chaperonas Moleculares , Chaperonas Moleculares/metabolismo , Bacteriófagos/fisiologia , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bactérias/virologia , Bactérias/metabolismo , Bactérias/genética
13.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995418

RESUMO

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Assuntos
Cordyceps , Genoma Viral , Filogenia , RNA Viral , Cordyceps/genética , RNA Viral/genética , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Proteínas Virais/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , RNA Polimerase Dependente de RNA/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Sequência de Aminoácidos , Fases de Leitura Aberta
14.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990253

RESUMO

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Assuntos
Ascomicetos , Micovírus , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Ascomicetos/virologia , Ascomicetos/genética , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos
15.
Vet Res ; 55(1): 86, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970119

RESUMO

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Mutação , Infecções por Orthomyxoviridae , Proteínas Virais , Animais , Camundongos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Virulência , Feminino , Proteínas Virais/genética , Proteínas Virais/metabolismo , Camundongos Endogâmicos BALB C , Replicação Viral
16.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000573

RESUMO

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Assuntos
Proteínas de Ligação a DNA , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virais , Micobacteriófagos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Lisogenia/genética , Genoma Viral , DNA Viral/genética
17.
Science ; 385(6704): 105-112, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963841

RESUMO

Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.


Assuntos
Endonucleases , Íntrons , Fagos de Pseudomonas , Pseudomonas aeruginosa , Interferência Viral , Proteínas Virais , Endonucleases/metabolismo , Endonucleases/genética , Interferência Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Fagos de Pseudomonas/enzimologia , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia
18.
Nat Commun ; 15(1): 6185, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039073

RESUMO

DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.


Assuntos
Microscopia Crioeletrônica , NAD , NAD/metabolismo , Ligação Proteica , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética , Modelos Moleculares , Bacteriófagos/metabolismo , Domínios Proteicos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Virais/metabolismo , Proteínas Virais/química
19.
BMC Infect Dis ; 24(1): 718, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039455

RESUMO

Mumps is a vaccine-preventable disease with high contagious capability. Its incidence declined rapidly since one dose of mumps vaccine was introduced into Expanded Program of Immunization (EPI) in 2008 in China. Nonetheless, the outbreaks of mumps remain frequent in China. Here we aim to assess herd immunity level followed by one-dose mumps ingredient vaccine and to elucidate the genetic characteristics of mumps viruses circulating in the post vaccine era in Jiangsu province of China. The complete sequences of mumps virus small hydrophobic(SH) gene were amplified and sequenced; coalescent-based Bayesian method was used to perform phylogenetic analysis with BEAST 1.84 software. Commercially available indirect enzyme-linked immune-sorbent IgG assay was used for the quantitative detection of IgG antibody against mumps virus. Our results show that genotype F was the predominant mumps viruses and belonged to indigenous spread, and most of Jiangsu sequences clustered together and formed a monophyly. The prevalence of mumps reached a peak in 2012 and subsequently declined, which presented an obvious different trajectory with virus circulating in other regions of China. The gene diversity of viruses circulating in Jiangsu province was far less than those in China. The antibody prevalence reached 70.42% in the general population during 2018 to 2020. The rising trend of antibody level was also observed. Although mumps antibody prevalence does not reach expected level, mumps virus faces higher pressure in Jiangsu province than the whole of China. To reduce further the prevalence of mumps viruses, two doses of mumps vaccine should be involved into EPI.


Assuntos
Anticorpos Antivirais , Vacina contra Caxumba , Vírus da Caxumba , Caxumba , Filogenia , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Vírus da Caxumba/classificação , Humanos , China/epidemiologia , Caxumba/epidemiologia , Caxumba/virologia , Caxumba/imunologia , Caxumba/prevenção & controle , Anticorpos Antivirais/sangue , Vacina contra Caxumba/administração & dosagem , Vacina contra Caxumba/imunologia , Adulto , Adulto Jovem , Feminino , Masculino , Genótipo , Adolescente , Criança , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Pré-Escolar , Imunidade Coletiva , Variação Genética , Proteínas Virais
20.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39042422

RESUMO

DNA manipulation is an essential tool in molecular microbiology research that is dependent on the ability of bacteria to take up and preserve foreign DNA by horizontal gene transfer. This process can be significantly impaired by the activity of bacterial restriction modification systems; bacterial operons comprising paired enzymatic activities that protectively methylate host DNA, while cleaving incoming unmodified foreign DNA. Ocr is a phage-encoded protein that inhibits Type I restriction modification systems, the addition of which significantly improves bacterial transformation efficiency. We recently established an improved and highly efficient transformation protocol for the important human pathogen group A Streptococcus using commercially available recombinant Ocr protein, manufacture of which has since been discontinued. In order to ensure the continued availability of Ocr protein within the research community, we have generated tools and methods for in-house Ocr production and validated the activity of the purified recombinant protein.


Assuntos
Proteínas Recombinantes , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/metabolismo , Transformação Bacteriana , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA