Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.626
Filtrar
1.
Blood ; 143(24): 2504-2516, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38579284

RESUMO

ABSTRACT: Wiskott-Aldrich syndrome (WAS) is a multifaceted monogenic disorder with a broad disease spectrum and variable disease severity and a variety of treatment options including allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT). No reliable biomarker exists to predict disease course and outcome for individual patients. A total of 577 patients with a WAS variant from 26 countries and a median follow-up of 8.9 years (range, 0.3-71.1), totaling 6118 patient-years, were included in this international retrospective study. Overall survival (OS) of the cohort (censored at HSCT or GT) was 82% (95% confidence interval, 78-87) at age 15 years and 70% (61-80) at 30 years. The type of variant was predictive of outcome: patients with a missense variant in exons 1 or 2 or with the intronic hot spot variant c.559+5G>A (class I variants) had a 15-year OS of 93% (89-98) and a 30-year OS of 91% (86-97), compared with 71% (62-81) and 48% (34-68) in patients with any other variant (class II; P < .0001). The cumulative incidence rates of disease-related complications such as severe bleeding (P = .007), life-threatening infection (P < .0001), and autoimmunity (P = .004) occurred significantly later in patients with a class I variant. The cumulative incidence of malignancy (P = .6) was not different between classes I and II. It confirms the spectrum of disease severity and quantifies the risk for specific disease-related complications. The class of the variant is a biomarker to predict the outcome for patients with WAS.


Assuntos
Genótipo , Síndrome de Wiskott-Aldrich , Humanos , Adolescente , Criança , Masculino , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/terapia , Feminino , Pré-Escolar , Adulto , Estudos Retrospectivos , Lactente , Adulto Jovem , Biomarcadores , Transplante de Células-Tronco Hematopoéticas , Índice de Gravidade de Doença , Proteína da Síndrome de Wiskott-Aldrich/genética , Seguimentos , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
2.
Pediatr Int ; 66(1): e15770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641933

RESUMO

BACKGROUND: WAS gene mutational analysis is crucial to establish a definite diagnosis of Wiskott-Aldrich syndrome (WAS). Data on the genetic background of WAS in Vietnamese patients have not been reported. METHODS: We recruited 97 male, unrelated patients with WAS and analyzed WAS gene mutation using Sanger sequencing technology. RESULTS: We identified 36 distinct hemizygous pathogenic mutations, with 17 novel variants, from 38 patients in the entire cohort (39.2%). The mutational spectrum included 14 missense, 12 indel, five nonsense, four splicing, and one non-stop mutations. Most mutations appear only once, with the exception of c.37C>T (p.R13X) and c.374G>A (p.G125E) each of which occurs twice in unrelated patients. CONCLUSION: Our data enrich the mutational spectrum of the WAS gene and are crucial for understanding the genetic background of WAS and for supporting genetic counseling.


Assuntos
Síndrome de Wiskott-Aldrich , Humanos , Masculino , Análise Mutacional de DNA , Mutação , Vietnã , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/genética
3.
Arch. argent. pediatr ; 122(1): e202310061, feb. 2024. tab, ilus
Artigo em Inglês, Espanhol | BINACIS, LILACS | ID: biblio-1525854

RESUMO

El síndrome de Wiskott-Aldrich es un error innato de la inmunidad de herencia ligada al cromosoma X, producido por variantes en el gen que codifica la proteína del síndrome de Wiskott-Aldrich (WASp). Reportamos el caso clínico de un paciente de 18 meses con diagnóstico de Wiskott-Aldrich que no presentaba donante antígeno leucocitario humano (HLA) idéntico y recibió un trasplante de células progenitoras hematopoyéticas (TCPH) con donante familiar haploidéntico. La profilaxis para enfermedad de injerto contra huésped incluyó ciclofosfamida (PT-Cy). El quimerismo del día +30 fue 100 % del donante y la evaluación postrasplante de la expresión de la proteína WAS fue normal. Actualmente, a 32 meses del trasplante, presenta reconstitución hematológica e inmunológica y quimerismo completo sin evidencia de enfermedad injerto contra huésped. El TCPH haploidéntico con PT-Cy se mostró factible y seguro en este caso de síndrome de WiskottAldrich en el que no se disponía de un donante HLA idéntico.


Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder caused by mutations in the gene that encodes the Wiskott-Aldrich syndrome protein (WASp). Here, we report the clinical case of an 18-month-old boy diagnosed with Wiskott-Aldrich syndrome, who did not have an HLA-matched related or unrelated donor and was treated successfully with a hematopoietic stem cell transplant (HSCT) from a haploidentical family donor. Graft-versus-host disease (GvHD) prophylaxis included post-transplant cyclophosphamide (PT-Cy). At day +30, the peripheral blood-nucleated cell chimerism was 100% and the WAS protein had a normal expression. Currently, at month 32 post-transplant, the patient has hematological and immune reconstitution and complete donor chimerism without evidence of GvHD. HSCT with PT-Cy was a feasible and safe option for this patient with WAS, in which an HLA matched donor was not available.


Assuntos
Humanos , Masculino , Lactente , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Transplante de Medula Óssea/efeitos adversos , Ciclofosfamida
4.
Genes Genet Syst ; 992024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382924

RESUMO

In Saccharomyces cerevisiae, boundaries formed by DNA sequence-dependent or -independent histone modifications stop the spread of the heterochromatin region formed via the Sir complex. However, it is unclear whether the histone modifiers that control DNA sequence-independent boundaries function in a chromosome-specific or -nonspecific manner. In this study, we evaluated the effects of the SAGA complex, a histone acetyltransferase (HAT) complex, and its relationship with other histone-modifying enzymes to clarify the mechanism underlying boundary regulation of the IMD2 gene on the right subtelomere of chromosome VIII. We found that Spt8, a component of the SAGA complex, is important for boundary formation in this region and that the inclusion of Spt8 in the SAGA complex is more important than its interaction with TATA-binding protein and TFIIS. In addition to SAGA, various HAT-related factors, such as NuA4 and Rtt109, also functioned in this region. In particular, the SAGA complex induced weak IMD2 expression throughout the cell, whereas NuA4 induced strong expression. These results indicate that multiple HATs contribute to the regulation of boundary formation and IMD2 expression on the right subtelomere of chromosome VIII and that IMD2 expression is determined by the balance between these factors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Síndrome de Wiskott-Aldrich , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Eur J Immunol ; 54(5): e2350450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356202

RESUMO

The Wiskott-Aldrich syndrome protein (WASp) regulates actin cytoskeletal dynamics and function of hematopoietic cells. Mutations in the WAS gene lead to two different syndromes; Wiskott-Aldrich syndrome (WAS) caused by loss-of-function mutations, and X-linked neutropenia (XLN) caused by gain-of-function mutations. We previously showed that WASp-deficient mice have a decreased number of regulatory T (Treg) cells in the thymus and the periphery. We here evaluated the impact of WASp mutations on Treg cells in the thymus of WAS and XLN mouse models. Using in vitro Treg differentiation assays, WAS CD4 single-positive thymocytes have decreased differentiation to Treg cells, despite normal early signaling upon IL-2 and TGF-ß stimulation. They failed to proliferate and express CD25 at high levels, leading to poor survival and a lower number of Foxp3+ Treg cells. Conversely, XLN CD4 single-positive thymocytes efficiently differentiate into Foxp3+ Treg cells following a high proliferative response to IL-2 and TGF-ß, associated with high CD25 expression when compared with WT cells. Altogether, these results show that specific mutations of WASp affect Treg cell development differently, demonstrating a critical role of WASp activity in supporting Treg cell development and expansion.


Assuntos
Diferenciação Celular , Proliferação de Células , Linfócitos T Reguladores , Timo , Proteína da Síndrome de Wiskott-Aldrich , Animais , Linfócitos T Reguladores/imunologia , Diferenciação Celular/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Camundongos , Timo/imunologia , Timo/citologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Interleucina-2/metabolismo , Interleucina-2/imunologia , Mutação , Fator de Crescimento Transformador beta/metabolismo , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
6.
Genes Cells ; 29(3): 217-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229233

RESUMO

In eukaryotes, single cells in a population display different transcriptional profiles. One of the factors regulating this heterogeneity is the chromatin state in each cell. However, the mechanisms of epigenetic chromatin regulation of specific chromosomal regions remain unclear. Therefore, we used single-cell tracking system to analyze IMD2. IMD2 is located at the subtelomeric region of budding yeast, and its expression is epigenetically regulated by heterochromatin fluctuations. Treatment with mycophenolic acid, an inhibitor of de novo GTP biosynthesis, triggered a decrease in GTP, which caused heterochromatin fluctuations at the IMD2 locus. Interestingly, within individually tracked cells, IMD2 expression state underwent repeated switches even though IMD2 is positioned within the heterochromatin region. We also found that 30% of the cells in a population always expressed IMD2. Furthermore, the addition of nicotinamide, a histone deacetylase inhibitor, or guanine, the GTP biosynthesis factor in salvage pathway of GTP biosynthesis, regulated heterogeneity, resulting in IMD2 expression being uniformly induced or suppressed in the population. These results suggest that gene expression heterogeneity in the IMD2 region is regulated by changes in chromatin structure triggered by slight decreases in GTP.


Assuntos
Proteínas de Saccharomyces cerevisiae , Síndrome de Wiskott-Aldrich , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Guanosina Trifosfato/metabolismo , Regulação Fúngica da Expressão Gênica
7.
Pediatr Dermatol ; 41(1): 143-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37469225

RESUMO

Treatment of severe eczema in patients with primary immunodeficiencies can be particularly challenging as there are no guidelines with regards to these conditions. Dupilumab is an interleukin (IL)-4Rα antagonist that inhibits both IL-4 and IL-13 and is approved for the treatment of atopic dermatitis in pediatric patients. In this report, we describe a patient with a case of severe eczema in the context of Wiskott-Aldrich syndrome-related disorder, who was successfully treated with dupilumab.


Assuntos
Dermatite Atópica , Eczema , Síndrome de Wiskott-Aldrich , Humanos , Criança , Síndrome de Wiskott-Aldrich/complicações , Síndrome de Wiskott-Aldrich/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Dermatite Atópica/complicações , Dermatite Atópica/tratamento farmacológico , Eczema/complicações , Eczema/tratamento farmacológico , Resultado do Tratamento , Índice de Gravidade de Doença
8.
Arch Argent Pediatr ; 122(1): e202310061, 2024 02 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37471507

RESUMO

Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder caused by mutations in the gene that encodes the Wiskott-Aldrich syndrome protein (WASp). Here, we report the clinical case of an 18-month-old boy diagnosed with Wiskott-Aldrich syndrome, who did not have an HLA-matched related or unrelated donor and was treated successfully with a hematopoietic stem cell transplant (HSCT) from a haploidentical family donor. Graft-versus-host disease (GvHD) prophylaxis included post-transplant cyclophosphamide (PT-Cy). At day +30, the peripheral blood-nucleated cell chimerism was 100% and the WAS protein had a normal expression. Currently, at month 32 post-transplant, the patient has hematological and immune reconstitution and complete donor chimerism without evidence of GvHD. HSCT with PT-Cy was a feasible and safe option for this patient with WAS, in which an HLA matched donor was not available.


El síndrome de Wiskott-Aldrich es un error innato de la inmunidad de herencia ligada al cromosoma X, producido por variantes en el gen que codifica la proteína del síndrome de Wiskott-Aldrich (WASp). Reportamos el caso clínico de un paciente de 18 meses con diagnóstico de Wiskott-Aldrich que no presentaba donante antígeno leucocitario humano (HLA) idéntico y recibió un trasplante de células progenitoras hematopoyéticas (TCPH) con donante familiar haploidéntico. La profilaxis para enfermedad de injerto contra huésped incluyó ciclofosfamida (PT-Cy). El quimerismo del día +30 fue 100 % del donante y la evaluación postrasplante de la expresión de la proteína WAS fue normal. Actualmente, a 32 meses del trasplante, presenta reconstitución hematológica e inmunológica y quimerismo completo sin evidencia de enfermedad injerto contra huésped. El TCPH haploidéntico con PT-Cy se mostró factible y seguro en este caso de síndrome de WiskottAldrich en el que no se disponía de un donante HLA idéntico.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Síndrome de Wiskott-Aldrich , Masculino , Criança , Humanos , Lactente , Transplante de Medula Óssea/efeitos adversos , Síndrome de Wiskott-Aldrich/terapia , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ciclofosfamida , Doença Enxerto-Hospedeiro/etiologia
9.
Pathol Res Pract ; 253: 155026, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118219

RESUMO

As patients continue to suffer from lymphoproliferative and myeloproliferative diseases known as haematopoietic malignancies can affect the bone marrow, blood, lymph nodes, and lymphatic and non-lymphatic organs. Despite advances in the current treatment, there is still a significant challenge for physicians to improve the therapy of HMs. WASp is an important regulator of actin polymerization and the involvement of WASp in transcription is thought to be linked to the DNA damage response and repair. In some studies, severe immunodeficiency and lymphoid malignancy are caused by WASp mutations or the absence of WASp and these mutations in WAS can alter the function and/or expression of the intracellular protein. Loss-of-function and Gain-of-function mutations in WASp have an impact on cancer malignancies' incidence and onset. Recent studies suggest that depending on the clinical or experimental situation, WASPs and WAVEs can operate as a suppressor or enhancers for cancer malignancy. These dual functions of WASPs and WAVEs in cancer likely arose from their multifaceted role in cells that could be targeted for anticancer drug development. The significant role and their association of WASp in Chronic myeloid leukaemia, Juvenile myelomonocytic leukaemia and T-cell lymphoma is discussed. In this review, we described the structure and function of WASp and its family mechanism, analysing major regulatory effectors and summarising the clinical relevance and drugs that specifically target WASp in disease treatment in various hematopoietic malignancies by different approaches.


Assuntos
Neoplasias Hematológicas , Neoplasias , Síndrome de Wiskott-Aldrich , Humanos , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/terapia , Neoplasias Hematológicas/genética , Biologia Molecular , Actinas/metabolismo
11.
Cell Immunol ; 393-394: 104783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37944382

RESUMO

Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.


Assuntos
Síndrome de Wiskott-Aldrich , Animais , Camundongos , Síndrome de Wiskott-Aldrich/genética , Baço/metabolismo , Linfócitos T , Células Matadoras Naturais/metabolismo
13.
Front Immunol ; 14: 1229674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781361

RESUMO

Background and aims: Wiskott-Aldrich syndrome (WAS) is an X-linked recessive primary immunodeficiency disorder characterized by severe eczema, recurrent infections, and micro-thrombocytopenia. Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapeutic option for patients with classic form. The risk of developing post-transplant tumors appears to be higher in patients with WAS than in other inborn errors of immunity (IEIs), but the actual incidence is not well defined, due to the scarcity of published data. Methods: Herein, we describe a 10-year-old patient diagnosed with WAS, treated with HSCT in the first year of life, who subsequently developed two rare solid tumors, kaposiform hemangioendothelioma and desmoid tumor. A review of the literature on post-HSCT tumors in WAS patients has been performed. Results: The patient received diagnosis of classic WAS at the age of 2 months (Zhu score = 3), confirmed by WAS gene sequencing, which detected the nonsense hemizygous c.37C>T (Arg13X) mutation. At 9 months, patient underwent HSCT from a matched unrelated donor with an adequate immune reconstitution, characterized by normal lymphocyte subpopulations and mitogen proliferation tests. Platelet count significantly increased, even though platelet count never reached reference values. A mixed chimerism was also detected, with a residual WASP- population on monocytes (27.3%). The patient developed a kaposiform hemangioendothelioma at the age of 5. A second abdominal tumor was identified, histologically classified as a desmoid tumor when he reached the age of 10 years. Both hematopoietic and solid tumors were identified in long-term WAS survivors after HSCT. Conclusion: Here, we describe the case of a patient with WAS who developed two rare solid tumors after HSCT. An active surveillance program for the risk of tumors is necessary in the long-term follow-up of post-HSCT WAS patients.


Assuntos
Fibromatose Agressiva , Transplante de Células-Tronco Hematopoéticas , Sarcoma de Kaposi , Síndrome de Wiskott-Aldrich , Masculino , Humanos , Lactente , Criança , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/terapia , Síndrome de Wiskott-Aldrich/genética , Fibromatose Agressiva/etiologia , Sarcoma de Kaposi/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
14.
Clin Immunol ; 255: 109759, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678719

RESUMO

PURPOSE: There are currently more than 480 primary immune deficiency (PID) diseases and about 7000 rare diseases that together afflict around 1 in every 17 humans. Computational aids based on data mining and machine learning might facilitate the diagnostic task by extracting rules from large datasets and making predictions when faced with new problem cases. In a proof-of-concept data mining study, we aimed to predict PID diagnoses using a supervised machine learning algorithm based on classification tree boosting. METHODS: Through a data query at the USIDNET registry we obtained a database of 2396 patients with common diagnoses of PID, including their clinical and laboratory features. We kept 286 features and all 12 diagnoses to include in the model. We used the XGBoost package with parallel tree boosting for the supervised classification model, and SHAP for variable importance interpretation, on Python v3.7. The patient database was split into training and testing subsets, and after boosting through gradient descent, the predictive model provides measures of diagnostic prediction accuracy and individual feature importance. After a baseline performance test, we used the Class Weighting Hyperparameter, or scale_pos_weight to correct for imbalanced classification. RESULTS: The twelve PID diagnoses were CVID (1098 patients), DiGeorge syndrome, Chronic granulomatous disease, Congenital agammaglobulinemia, PID not otherwise classified, Specific antibody deficiency, Complement deficiency, Hyper-IgM, Leukocyte adhesion deficiency, ectodermal dysplasia with immune deficiency, Severe combined immune deficiency, and Wiskott-Aldrich syndrome. For CVID, the model found an accuracy on the train sample of 0.80, with an area under the ROC curve (AUC) of 0.80, and a Gini coefficient of 0.60. In the test subset, accuracy was 0.76, AUC 0.75, and Gini 0.51. The positive feature value to predict CVID was highest for upper respiratory infections, asthma, autoimmunity and hypogammaglobulinemia. Features with the highest negative predictive value were high IgE, growth delay, abscess, lymphopenia, and congenital heart disease. For the rest of the diagnoses, accuracy stayed between 0.75 and 0.99, AUC 0.46-0.87, Gini 0.07-0.75, and LogLoss 0.09-8.55. DISCUSSION: Clinicians should remember to consider the negative predictive features together with the positives. We are calling this a proof-of-concept study to continue with our explorations. A good performance is encouraging, and feature importance might aid feature selection for future endeavors. In the meantime, we can learn from the rules derived by the model and build a user-friendly decision tree to generate differential diagnoses.


Assuntos
Doenças da Imunodeficiência Primária , Síndrome de Wiskott-Aldrich , Humanos , Diagnóstico Diferencial , Aprendizado de Máquina , Mineração de Dados
16.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37478401

RESUMO

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Assuntos
Eczema , Transplante de Células-Tronco Hematopoéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína da Síndrome de Wiskott-Aldrich/genética , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia Genética/métodos , Eczema/etiologia , Eczema/metabolismo , Eczema/terapia
17.
Front Immunol ; 14: 1202772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388746

RESUMO

Objective: To investigate similarities and differences in immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children with Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). Method: We retrospectively analyzed the lymphocyte subpopulations and the serum level of various immune-related protein or peptide on Days 15, 30, 100, 180 and 360 post-transplantation in 70 children with WAS and 48 children with CGD who underwent allo-HSCT at the Transplantation Center of the Department of Hematology-Oncology, Children's Hospital of Chongqing Medical University from January 2007 to December 2020, and we analyzed the differences in the immune reconstitution process between the two groups. Results: ① The WAS group had higher lymphocyte subpopulation counts than the CGD group. ② Among children aged 1-3 years who underwent transplantation, the WAS group had higher lymphocyte subpopulation counts than the CGD group. ③ Further comparisons were performed between children with non-umbilical cord blood transplantation (non-UCBT) and children with umbilical cord blood transplantation (UCBT) in the WAS group. On Day 15 and 30 post-transplantation, the non-UCBT group had higher B-cell counts than the UCBT group. On the remaining time points post-transplantation, the UCBT group had higher lymphocyte subpopulation counts than the non-UCBT group. ④ Comparisons were performed between children with non-UCBT in the WAS group and in the CGD group, the lymphocyte subpopulation counts were higher in the WAS group compared to the CGD group. ⑤ On Day 100 post-transplantation, the CGD group had higher C3 levels than the WAS group. On Day 360 post-transplantation, the CGD group had higher IgA and C4 levels than the WAS group. Conclusion: ① The rate of immunity recovery was faster in children within the WAS group compared to those children within the CGD group, which may be attributed to the difference of percentage undergoing UCBT and primary diseases. ② In the WAS group, the non-UCBT group had higher B-cell counts than the UCBT group at Day 15 and 30 post-transplantation, however, the UCBT group had higher B-cell counts than the non-UCBT group at Day 100 and 180 post-transplantation, suggesting that cord blood has strong B-cell reconstitution potentiality after transplantation.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Linfocitose , Síndrome de Wiskott-Aldrich , Humanos , Criança , Doença Granulomatosa Crônica/terapia , Estudos Retrospectivos , Síndrome de Wiskott-Aldrich/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
18.
Curr Protoc ; 3(6): e800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37310206

RESUMO

The development of "humanized" mice has become a prominent tool for translational animal studies of human diseases. Immunodeficient mice can be humanized by injections of human umbilical cord stem cells. The engraftment of these cells and their development into human lymphocytes has been made possible by the development of novel severely immunodeficient mouse strains. Proven protocols for the generation and analysis of humanized mice in the NSG mouse background are presented here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human umbilical stem cell engraftment of neonatal immunodeficient mice Basic Protocol 2: Human umbilical stem cell engraftment of 4-week-old immunodeficient mice Support Protocol 1: Preparation of human umbilical stem cells Support Protocol 2: Submandibular blood collection from humanized mice and analysis of peripheral blood via flow cytometry.


Assuntos
Células-Tronco , Síndrome de Wiskott-Aldrich , Humanos , Animais , Camundongos , Citometria de Fluxo , Cordão Umbilical , Umbigo
19.
Front Immunol ; 14: 1188099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350958

RESUMO

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation. Patients with WAS show reduced numbers of peripheral blood T lymphocytes and an altered T-cell receptor repertoire. In vitro, their peripheral T cells show decreased proliferation and cytokine production upon aCD3/aCD28 stimulation. It is unclear whether these T-cell defects are acquired during peripheral activation or are, in part, generated during thymic development. Here, we assessed the role of WASp during T-cell differentiation using artificial thymic organoid cultures and in the thymus of humanized mice. Although CRISPR/Cas9 WAS knockout hematopoietic stem and progenitor cells (HSPCs) rearranged the T-cell receptor and differentiated to T-cell receptor (TCR)+ CD4+ CD8+ double-positive (DP) cells similar to wild-type HSPCs, a partial defect in the generation of CD8 single-positive (SP) cells was observed, suggesting that WASp is involved in their positive selection. TCR repertoire analysis of the DP and CD8+ SP population, however, showed a polyclonal repertoire with no bias toward autoreactivity. To our knowledge, this is the first study of the role of WASp in human T-cell differentiation and on TCR repertoire generation.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Humanos , Animais , Camundongos , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Linhagem da Célula , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Diferenciação Celular
20.
Front Immunol ; 14: 1102824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122750

RESUMO

Introduction: The abnormal expression of the Wiskott-Aldrich syndrome protein (WASP) encoded by the Wiskott-Aldrich syndrome (WAS) gene has been implicated in tumor invasion and immune regulation. However, prognostic implications of WAS and its correlation tumor infiltrating in renal clear cell carcinoma (ccRCC) is not clear cut. Methods: The correlation between WAS expression, clinicopathological variables and clinical outcomes were evaluated using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Tumor Immune Estimation Resource (TIMER), UALCAN, Gene Expression Profiling Interaction Analysis (GEPIA), Kaplan-Meier (KM) plotter and other databases. Furthermore, we assessed the transcription expression of WAS in renal cancer tissues, various renal carcinoma cell lines and human renal tubular cells (HK2) using quantitative polymerase chain reaction (qPCR). A comprehensive analysis of multiple databases including TIMER, GEPIA, TISIDB, ESTIMATE algorithm, and CIBERSORT algorithm were performed to determine the correlation between WAS and tumor infiltrating immune cells in ccRCC. Results: The results displayed an increase in WAS mRNA level in ccRCC compared to normal tissue. WAS protein level was found highly expressed in cancer tissues, particularly within renal tumor cells via the human protein atlas (HPA). Interestingly, we found that elevated WAS expression was significantly positively correlated with the infiltration of CD8+ T cells, B cells, Monocytes, Neutrophils, Macrophages, T cell regulation, NK cells, and Dendritic cells in ccRCC. Bioinformatics demonstrated a strong correlation between WAS expression and 42 immune checkpoints, including the T cell exhaustion gene PD-1, which is critical for exploring immunotherapy for ccRCC. We revealed that patients with high WAS expression were less sensitive to immunotherapy medications. Conclusion: In conclusion, our study identified that WAS was a prognostic biomarker and correlated with immune infiltrates in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Síndrome de Wiskott-Aldrich , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Neoplasias Renais/genética , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...