Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Chemosphere ; 361: 142443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815811

RESUMO

Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.


Assuntos
Crassostrea , Sistema Enzimático do Citocromo P-450 , Receptores Citoplasmáticos e Nucleares , Crassostrea/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica , Simulação de Dinâmica Molecular , Xenobióticos/metabolismo
2.
Xenobiotica ; 54(6): 279-287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626291

RESUMO

In vitro systems are useful tools for unravelling species differences in xenobiotic metabolism.The current work aimed to validate the technique of precision-cut liver slices (PCLS) for comparative studies on xenobiotic metabolism in swine and cattle.PCLS from swine (n = 3) and cattle (n = 3) were produced using a Brendel-VitronTM Tissue Slicer and cultured for 6 h. Tissue viability was preserved throughout the whole culture period.Metabolic viability was evaluated using the anthelmintics albendazole (ABZ) and fenbendazole (FBZ) as model drugs, as well as other substrates of hepatic monooxygenases: benzydamine (BZ) N-oxygenase (FMO-dependent), and the O-dealkylations of 7-ethoxyresorufin (EROD, CYP1A1-dependent) and 7-methoxyresorufin (MROD, CYP1A2-dependent).ABZ S-oxygenation resulted 6-fold (cattle) and 13.6-fold (swine) higher (p = 0.001) compared to FBZ S-oxygenation.Similar BZ N-oxygenation and EROD activities were observed in PCLS cultures from both species. MROD was 2.5-fold higher (p = 0.033) in swine than in cattle. Similarly, ABZ S-oxygenation was 1.7-fold higher (p = 0.0002) in swine than in cattle. Conversely, a 82% higher (p = 0.0003) rate of FBZ S-oxygenation was evidenced in PCLS cultures from cattle compared to those from swine.Overall, this work shows that PCLS cultures are useful to obtain relevant information on species differences in xenobiotic metabolism.


Assuntos
Fígado , Xenobióticos , Animais , Bovinos , Xenobióticos/metabolismo , Fígado/metabolismo , Suínos
3.
Environ Sci Pollut Res Int ; 31(11): 17256-17274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337121

RESUMO

The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.


Assuntos
Trinitrotolueno , Trinitrotolueno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Xenobióticos/metabolismo , Biotransformação , Bactérias/metabolismo , Biodegradação Ambiental , Perfilação da Expressão Gênica
4.
Toxicol Mech Methods ; 34(3): 237-244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982319

RESUMO

In a world with a rising use of pesticides, these chemicals, although designed to effectively control pests, pose potential threats to the environment and non-target organisms, including humans. Thus, this systematic review aims to investigate a possible association between genetic polymorphisms and susceptibility and genotoxicity in individuals occupationally exposed to pesticides. This review was conducted following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. A total of 14 carefully selected studies were thoroughly analyzed by two reviewers, who assigned scores based on previously set evaluation criteria. This study classified over half of the chosen studies as having moderate or strong quality, observing a correlation between certain genetic polymorphisms involved in xenobiotic metabolism and genotoxicity in workers exposed to pesticides. Results suggest that the genes associated with xenobiotic metabolism play a substantial role in determining individuals' susceptibility to genomic damage due to pesticide exposure, affecting both their peripheral blood and oral mucosa. This implies that individuals with specific genotypes may experience increased or decreased levels of DNA damage when exposed to these chemicals.


Assuntos
Exposição Ocupacional , Praguicidas , Humanos , Praguicidas/toxicidade , Exposição Ocupacional/efeitos adversos , Xenobióticos , Polimorfismo Genético , Dano ao DNA
5.
Pest Manag Sci ; 79(12): 5349-5361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624650

RESUMO

BACKGROUND: Laboratory-selected resistant strains of Euschistus heros to thiamethoxam (NEO) and lambda-cyhalothrin (PYR) were recently reported in Brazil. However, the mechanisms conferring resistance to these insecticides in E. heros remain unresolved. We utilized comparative transcriptome profiling and single nucleotide polymorphism (SNP) calling of susceptible and resistant strains of E. heros to investigate the molecular mechanism(s) underlying resistance. RESULTS: The E. heros transcriptome was assembled, generating 91 673 transcripts with a mean length of 720 bp and N50 of 1795 bp. Comparative gene expression analysis between the susceptible (SUS) and NEO strains identified 215 significantly differentially expressed (DE) transcripts. DE transcripts associated with the xenobiotic metabolism were all up-regulated in the NEO strain. The comparative analysis of the SUS and PYR strains identified 204 DE transcripts, including an esterase (esterase FE4), a glutathione-S-transferase, an ABC transporter (ABCC1) and aquaporins that were up-regulated in the PYR strain. We identified 9588 and 15 043 nonsynonymous SNPs in the PYR and NEO strains. One of the SNPs (D70N) detected in the NEO strain occurs in a subunit (α5) of the nAChRs, the target site of neonicotinoid insecticides. Nevertheless, this residue position in α5 is not conserved among insects. CONCLUSIONS: Neonicotinoid and pyrethroid resistance in laboratory-selected E. heros is associated with a potential metabolic resistance mechanism by the overexpression of proteins commonly involved in the three phases of xenobiotic metabolism. Together these findings provide insight into the potential basis of resistance in E. heros and will inform the development and implementation of resistance management strategies against this important pest. © 2023 Society of Chemical Industry.


Assuntos
Heterópteros , Inseticidas , Nitrilas , Piretrinas , Animais , Tiametoxam , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Transcriptoma , Xenobióticos , Piretrinas/farmacologia , Perfilação da Expressão Gênica , Esterases
6.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628737

RESUMO

Spermatogenesis is a very complex process with an intricate transcriptional regulation. The transition from the diploid to the haploid state requires the involvement of specialized genes in meiosis, among other specific functions for the formation of the spermatozoon. The transcription factor cAMP-response element modulator (CREM) is a key modulator that triggers the differentiation of the germ cell into the spermatozoon through the modification of gene expression. CREM has multiple repressor and activator isoforms whose expression is tissue-cell-type specific and tightly regulated by various factors at the transcriptional, post-transcriptional and post-translational level. The activator isoform CREMτ controls the expression of several relevant genes in post-meiotic stages of spermatogenesis. In addition, exposure to xenobiotics negatively affects CREMτ expression, which is linked to male infertility. On the other hand, antioxidants could have a positive effect on CREMτ expression and improve sperm parameters in idiopathically infertile men. Therefore, CREM expression could be used as a biomarker to detect and even counteract male infertility. This review examines the importance of CREM as a transcription factor for sperm production and its relevance in male fertility, infertility and the response to environmental xenobiotics that may affect CREMτ expression and the downstream regulation that alters male fertility. Also, some health disorders in which CREM expression is altered are discussed.


Assuntos
Infertilidade Masculina , Xenobióticos , Masculino , Humanos , Sêmen , Espermatogênese/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Infertilidade Masculina/genética , Meiose , Elementos de Resposta , Fertilidade/genética , Modulador de Elemento de Resposta do AMP Cíclico/genética
7.
Chemosphere ; 340: 139877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619748

RESUMO

The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-ß-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.


Assuntos
Receptores Citoplasmáticos e Nucleares , Xenobióticos , Animais , Simulação de Acoplamento Molecular , Estrogênios , Estradiol
8.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372934

RESUMO

Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the scientific community. Antibiotics, in turn, can pose severe risks for the emergence of multidrug-resistant microorganisms, as their frequent use for medical and veterinary purposes can generate constant selective pressure on the microbiota of urban and agricultural effluents. In the search for more efficient industrial processes, some bacterial laccases stand out for their tolerance to extreme physicochemical conditions and their fast generation cycles. Accordingly, to expand the range of effective approaches for the bioremediation of environmentally important compounds, the prospection of bacterial laccases was carried out from a custom genomic database. The best hit found in the genome of Chitinophaga sp. CB10, a Bacteroidetes isolate obtained from a biomass-degrading bacterial consortium, was subjected to in silico prediction, molecular docking, and molecular dynamics simulation analyses. The putative laccase CB10_180.4889 (Lac_CB10), composed of 728 amino acids, with theoretical molecular mass values of approximately 84 kDa and a pI of 6.51, was predicted to be a new CopA with three cupredoxin domains and four conserved motifs linking MCOs to copper sites that assist in catalytic reactions. Molecular docking studies revealed that Lac_CB10 had a high affinity for the molecules evaluated, and the affinity profiles with multiple catalytic pockets predicted the following order of decreasing thermodynamically favorable values: tetracycline (-8 kcal/mol) > ABTS (-6.9 kcal/mol) > sulfisoxazole (-6.7 kcal/mol) > benzidine (-6.4 kcal/mol) > trimethoprim (-6.1 kcal/mol) > 2,4-dichlorophenol (-5.9 kcal/mol) mol. Finally, the molecular dynamics analysis suggests that Lac_CB10 is more likely to be effective against sulfisoxazole-like compounds, as the sulfisoxazole-Lac_CB10 complex exhibited RMSD values lower than 0.2 nm, and sulfisoxazole remained bound to the binding site for the entire 100 ns evaluation period. These findings corroborate that LacCB10 has a high potential for the bioremediation of this molecule.


Assuntos
Bacteroidetes , Lacase , Lacase/metabolismo , Simulação de Acoplamento Molecular , Bacteroidetes/metabolismo , Biodegradação Ambiental , Sulfisoxazol , Xenobióticos/metabolismo , Simulação de Dinâmica Molecular , Bactérias/metabolismo
9.
Arch Oral Biol ; 152: 105716, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210809

RESUMO

OBJECTIVE: To determine the association between genetic factors and molar-incisor hypomineralisation (MIH) and/or hypomineralised second primary molars by means of a systematic review. DESIGN: A search was performed in Medline-PubMed, Scopus, Embase and Web of Science databases; manual search and search in gray literature were also performed. Selection of articles was performed independently by two researchers. A third examiner was involved in cases of disagreement. Data extraction was performed using an Excel® spreadsheet and independent analysis was performed for each outcome. RESULTS: Sixteen studies were included. There was an association between MIH and genetic variants related to amelogenesis, immune response, xenobiotic detoxification and other genes. Moreover, interactions between amelogenesis and immune response genes, and SNPs in the aquaporin gene and vitamin D receptors were associated with MIH. Greater agreement of MIH was found in pairs of monozygotic twins than dizygotic twins. The heritability of MIH was 20 %. Hypomineralised second primary molars was associated with SNPs in the hypoxia-related HIF-1 gene and methylation in genes related to amelogenesis. CONCLUSION: With very low or low certainty of evidence, an association was observed between MIH and SNPs in genes associated with amelogenesis, immune response, xenobiotic detox and ion transport. Interactions between genes related to amelogenesis and immune response as well as aquaporin genes were associated to MIH. With very low certainty of evidence, hypomineralised second primary molars was associated to a hypoxia-related gene and to methylation in genes related to amelogenesis. Moreover, higher agreement of MIH in pairs of monozygotic twins than dizygotic twins was observed.


Assuntos
Hipoplasia do Esmalte Dentário , Hipomineralização Molar , Humanos , Hipoplasia do Esmalte Dentário/genética , Xenobióticos , Amelogênese/genética , Dente Molar , Prevalência
10.
Sci Total Environ ; 887: 163948, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37149185

RESUMO

Marine mussels, especially Mytilus galloprovincialis, are well-established sentinel species, being naturally resistant to the exposure to multiple xenobiotics of natural and anthropogenic origin. Even if the response to multiple xenobiotic exposure is well known at the host level, the role of the mussel-associated microbiome in the animal response to environmental pollution is poorly explored, despite its potential in xenobiotic detoxification and its important role in host development, protection, and adaptation. Here, we characterized the microbiome-host integrative response of M. galloprovincialis in a real-world setting, involving exposure to a complex pattern of emerging pollutants, as occurs in the Northwestern Adriatic Sea. A total of 387 mussel individuals from 3 commercial farms, spanning about 200 km along the Northwestern Adriatic coast, and in 3 different seasons, were collected. Multiresidue analysis (for quantitative xenobiotic determination), transcriptomics (for host physiological response), and metagenomics (for host-associated microbial taxonomical and functional features) analyses were performed on the digestive glands. According to our findings, M. galloprovincialis responds to the presence of the complex pattern of multiple emerging pollutants - including the antibiotics sulfamethoxazole, erythromycin, and tetracycline, the herbicides atrazine and metolachlor, and the insecticide N,N-diethyl-m-toluamide - integrating host defense mechanisms, e.g., through upregulation of transcripts involved in animal metabolic activity, and microbiome-mediated detoxification functions, including microbial functionalities involved in multidrug or tetracycline resistance. Overall, our data highlight the importance of the mussel-associated microbiome as a strategic player for the orchestration of resistance to the multixenobiotic exposure at the holobiont level, providing strategic functionalities for the detoxification of multiple xenobiotic substances, as occurring in real world exposure settings. Complementing the host with microbiome-dependent xenobiotic degradative and resistance genes, the M. galloprovincialis digestive gland associated microbiome can have an important role in the detoxification of emerging pollutants in a context of high anthropogenic pressure, supporting the relevance of mussel systems as potential animal-based bioremediation tool.


Assuntos
Microbiota , Mytilus , Praguicidas , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Estações do Ano , Praguicidas/análise , Xenobióticos/metabolismo , Poluentes Químicos da Água/análise
11.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047003

RESUMO

Oxidative stress is associated with several acute and chronic disorders, including hematological malignancies such as acute myeloid leukemia, the most prevalent acute leukemia in adults. Xenobiotics are usually harmless compounds that may be detrimental, such as pharmaceuticals, environmental pollutants, cosmetics, and even food additives. The storage of xenobiotics can serve as a defense mechanism or a means of bioaccumulation, leading to adverse effects. During the absorption, metabolism, and cellular excretion of xenobiotics, three steps may be distinguished: (i) inflow by transporter enzymes, (ii) phases I and II, and (iii) phase III. Phase I enzymes, such as those in the cytochrome P450 superfamily, catalyze the conversion of xenobiotics into more polar compounds, contributing to an elevated acute myeloid leukemia risk. Furthermore, genetic polymorphism influences the variability and susceptibility of related myeloid neoplasms, infant leukemias associated with mixed-lineage leukemia (MLL) gene rearrangements, and a subset of de novo acute myeloid leukemia. Recent research has shown a sustained interest in determining the regulators of cytochrome P450, family 2, subfamily E, member 1 (CYP2E1) expression and activity as an emerging field that requires further investigation in acute myeloid leukemia evolution. Therefore, this review suggests that CYP2E1 and its mutations can be a therapeutic or diagnostic target in acute myeloid leukemia.


Assuntos
Leucemia Mieloide Aguda , Xenobióticos , Lactente , Adulto , Humanos , Citocromo P-450 CYP2E1 , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Doença Aguda , Microambiente Tumoral
12.
World J Microbiol Biotechnol ; 39(5): 127, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941452

RESUMO

Laccases highlight for xenobiotic bioremediation, as well as application in the fine chemical, textile, biofuel and food industries. In a previous work, we described the preliminary characterization of laccase LacMeta, a promising enzyme for the bioremediation of dyes, able to decolorization malachite green (MG), trypan blue, methylene blue. Here we demonstrate that LacMeta is indeed suitable for the complete degradation and detoxification of MG dye, not just for its discoloration, since some works show false positives due to the formation of colorless intermediates such as leucomalachite. The optimal pH and temperature parameters of LacMeta were 5.0 and 50 °C, respectively (MG as substrate). LacMeta was tolerant of up to 10 mmol L- 1 EDTA (82%) and up to 5% (V/V) acetone (91%) and methanol (71%), while SDS promoted severe inhibition. For ions, a high tolerance to cobalt, zinc, manganese, and calcium (10 mmol L- 1) was also observed (> 90%). Even under high-salinity conditions (1 mol L- 1 NaCl), the residual bleaching activity of the dye remained at 61%. Furthermore, the bleaching product of MG did not inhibit the germination of sorghum and tomato seeds and was inert to the vegetative structures of the germinated seedlings. Additionally, this treatment effectively reduced the cytotoxic effect of the dye on microorganisms (Escherichia coli and Azospirillum brasilense), which can be explained by H-NMR spectral analysis results since LacMeta completely degraded the peak signals corresponding to the aromatic rings in the dye, demonstrating extreme efficiency in the bioremediation of the xenobiotic at high concentrations (50 mg L- 1).


Assuntos
Lacase , Xenobióticos , Lacase/metabolismo , Corantes de Rosanilina/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
13.
Vet Res Commun ; 47(2): 803-815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36542192

RESUMO

Fenbendazole (FBZ), a benzymidazole (BZD) anthelmintic drug, is used for in-feed medication in pigs. BZD-containing drugs may induce cytochrome P450 isozymes (CYPs), particularly those members of the CYP1A subfamily. The current research evaluated the plasma and liver availability and metabolism of FBZ and its metabolites, oxfendazole (OFZ) and fenbendazole sulphone (FBZSO2), after the administration of the parent drug in feed, and characterized the effect of the sustained administration of the anthelmintic on the catalytic activities of xenobiotic metabolizing enzymes in pig liver. Five female Landrace piglets remained untreated (controls), and other six were treated with a pre-mix of FBZ, combined with feed, for 9 consecutive days as usually is recommended. Blood samples were collected from each treated animal up to day 9 and analyzed by HPLC; all animals were slaughtered for preparation of liver microsomes. Plasma concentration ratios OFZ/FBZ and FBZSO2/OFZ increased significantly (p < 0.05) from the beginning to the end of drug exposure, which may indicate an enhanced conversion of FBZ into its metabolites. FBZ represented 45.8 ± 3.4% of the total anthelmintic molecules in liver tissue. Increased CYP1A-dependent 7-ethoxy (24.5-fold, p = 0.0032) and 7-methoxyresorufin (17.2-fold, p = 0.0006) O-dealkylase activities was observed in liver microsomes from FBZ-treated animals. In addition, a 64% increase (p = 0.042) in the rate of FBZ S-oxidation was observed in pigs treated with the anthelmintic drug compared to that measured in untreated animals. Thus, the continuous FBZ administration may accelerate its own in vivo hepatic metabolism through the CYP1A pathway.


Assuntos
Anti-Helmínticos , Fenbendazol , Animais , Feminino , Suínos , Fenbendazol/farmacologia , Fenbendazol/metabolismo , Xenobióticos/metabolismo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/metabolismo , Fígado/metabolismo
14.
Sci Total Environ ; 856(Pt 1): 158859, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126706

RESUMO

This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.


Assuntos
Poluentes Ambientais , Praguicidas , Criança , Recém-Nascido , Feminino , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Xenobióticos/toxicidade , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Leite Humano/química
15.
BMC Genomics ; 23(1): 757, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396986

RESUMO

BACKGROUND: Hemiptera is one of the most speciose orders of insects, and the most speciose considering Hemimetabola. Through their evolutive history, hemipterans with different feeding habits have adapted to deal with different chemical challenges. Three major gene families are involved in xenobiotic detoxification in insects: the cytochromes P450 (CYPs), carboxyl/cholinesterases (CCEs), and glutathione transferases (GSTs). Here we perform a comparative analysis on the complement of these gene superfamilies across five hemipteran species; four heteropterans (the pentatomid plant feeders Nezara viridula and Halyomorpha halys; the hematophagous Cimex lectularius, Cimicidae, and Rhodnius prolixus, Reduviidae), and one Auchenorrhyncha plant feeder (Nilaparvata lugens). RESULTS: Our results point to an expansion of several enzyme families associated with xenobiotic detoxification in heteropterans with respect to other species and the existence of a dynamic evolution pattern including CYP3 clan, hormone and pheromone processing class in the CCE superfamily, and sigma class in GST superfamily. Other detoxification-related families are reduced in the hemipteran species analyzed here: reduction or even absence of epsilon class and reduced delta class in GST superfamily; absence of mitochondrial CYP12 family; absence of CYP9 family in CYP3 clan; and reduction or even absence of some dietary/detoxification groups of CCEs. Interestingly, the most polyphagous species analyzed here (H. halys) is also the one that presents the largest repertoire of detoxification enzymes. Gene cluster analysis suggests that this could be due to gene duplication events. CONCLUSIONS: The evolutionary analysis performed here reveals characteristics that are both common and particular for heteropterans. The composition and organization of detoxification-related gene families could shed light on evolutionary forces that shaped their divergence. These families are important for both the detoxification of diet products and for conferring tolerance or resistance to synthetic insecticides. Furthermore, we present the first comprehensive analysis of detoxification gene superfamilies in N. viridula, an understudied species in spite of its economic relevance as a crop pest. The information obtained is of interest for basic insect science as well as for the control of harmful species and the management of insecticide resistance.


Assuntos
Heterópteros , Inseticidas , Rhodnius , Animais , Xenobióticos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Glutationa Transferase/genética
16.
Genes (Basel) ; 13(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36292784

RESUMO

Fasciola hepatica anthelmintic resistance may be associated with the catalytic activity of xenobiotic metabolizing enzymes. The gene expression of one of these enzymes, identified as carboxylesterase B (CestB), was previously described as inducible in adult parasites under anthelmintic treatment and exhibited a single nucleotide polymorphism at position 643 that translates into a radical amino acid substitution at position 215 from Glutamic acid to Lysine. Alphafold 3D models of both allelic sequences exhibited a significant affinity pocket rearrangement and different ligand-docking modeling results. Further bioinformatics analysis confirmed that the radical amino acid substitution is located at the ligand affinity site of the enzyme, affecting its affinity to serine hydrolase inhibitors and preferences for ester ligands. A field genotyping survey from parasite samples obtained from two developmental stages isolated from different host species from Argentina and Mexico exhibited a 37% allele distribution for 215E and a 29% allele distribution for 215K as well as a 34% E/K heterozygous distribution. No linkage to host species or geographic origin was found in any of the allele variants.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Animais , Fasciola hepatica/genética , Fasciola hepatica/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Substituição de Aminoácidos , Ligantes , Polimorfismo de Nucleotídeo Único/genética , Lisina , Ácido Glutâmico/genética , Xenobióticos , Anti-Helmínticos/farmacologia , Sítios de Ligação , Ésteres , Serina
17.
PLoS Pathog ; 18(10): e1010860, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36264855

RESUMO

Global banana production is currently challenged by Panama disease, caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FocTR4). There are no effective fungicide-based strategies to control this soil-borne pathogen. This could be due to insensitivity of the pathogen to fungicides and/or soil application per se. Here, we test the effect of 12 single-site and 9 multi-site fungicides against FocTR4 and Foc Race1 (FocR1) in quantitative colony growth, and cell survival assays in purified FocTR4 macroconidia, microconidia and chlamydospores. We demonstrate that these FocTR4 morphotypes all cause Panama disease in bananas. These experiments reveal innate resistance of FocTR4 to all single-site fungicides, with neither azoles, nor succinate dehydrogenase inhibitors (SDHIs), strobilurins or benzimidazoles killing these spore forms. We show in fungicide-treated hyphae that this innate resistance occurs in a subpopulation of "persister" cells and is not genetically inherited. FocTR4 persisters respond to 3 µg ml-1 azoles or 1000 µg ml-1 strobilurins or SDHIs by strong up-regulation of genes encoding target enzymes (up to 660-fold), genes for putative efflux pumps and transporters (up to 230-fold) and xenobiotic detoxification enzymes (up to 200-fold). Comparison of gene expression in FocTR4 and Zymoseptoria tritici, grown under identical conditions, reveals that this response is only observed in FocTR4. In contrast, FocTR4 shows little innate resistance to most multi-site fungicides. However, quantitative virulence assays, in soil-grown bananas, reveals that only captan (20 µg ml-1) and all lipophilic cations (200 µg ml-1) suppress Panama disease effectively. These fungicides could help protect bananas from future yield losses by FocTR4.


Assuntos
Fungicidas Industriais , Fusarium , Musa , Fungicidas Industriais/farmacologia , Succinato Desidrogenase , Estrobilurinas , Captana , Xenobióticos , Doenças das Plantas/genética , Esporos Fúngicos , Solo , Azóis , Benzimidazóis
18.
Toxicol In Vitro ; 85: 105474, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122806

RESUMO

Zerumbone (ZER) is a phytochemical with antioxidant and antiproliferative properties. This study evaluated the cytoxicity of ZER combined with chemotherapeutic agents and the expression of mRNA genes related to cell cycle, cell death, xenobiotic metabolism, DNA damage, and endoplasmic reticulum (ER) stress in HepG2/C3A cells. ZER was cytotoxic (IC50, 44.31 µM). ZER-induced apoptosis was related to BBC3 and ERN1 upregulation (ER stress), and its antiproliferative effects were attributable to MYC, IGF1, and NF-kB mRNA inhibition. ZER-induced G2/M arrest and DNA damage was associated with mRNA expression of cell cycle (CDKN1A) and DNA damage (GADD45A) genes. Increased CYP1A2 and CYP2C19 mRNA expression suggested ZER metabolization, and reduced CYP1A1 and CYP2D6 expression indicated a longer time of action of ZER in the cell, enhancing its pharmacological effect. ZER downregulated TP53, PARP1, BIRC5 (apoptosis), and MAP1LC3A (autophagy). In apoptosis assay, the data of the association treatments with ZER suggested antagonism. In cytotoxicity assay, the data of the association treatments with ZER suggested synergism action to cisplatin and antagonism action to doxorubicin and 5-fluorouracil. Thus, ZER has potential for application in chemotherapy as it modulates mRNA targets; however, it may not have the desired efficiency when combined with other chemotherapeutic agents.


Assuntos
Antineoplásicos , Sesquiterpenos , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Cisplatino/farmacologia , Antioxidantes/farmacologia , NF-kappa B , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP1A1 , Xenobióticos/farmacologia , Sesquiterpenos/farmacologia , Apoptose , Dano ao DNA , Antineoplásicos/farmacologia , Compostos Fitoquímicos/farmacologia , RNA Mensageiro , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Linhagem Celular Tumoral
19.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142207

RESUMO

Chronic kidney disease (CKD) is characterized as sustained damage to the renal parenchyma, leading to impaired renal functions and gradually progressing to end-stage renal disease (ESRD). Diabetes mellitus (DM) and arterial hypertension (AH) are underlying diseases of CKD. Genetic background, lifestyle, and xenobiotic exposures can favor CKD onset and trigger its underlying diseases. Cigarette smoking (CS) is a known modified risk factor for CKD. Compounds from tobacco combustion act through multi-mediated mechanisms that impair renal function. Electronic nicotine delivery systems (ENDS) consumption, such as e-cigarettes and heated tobacco devices, is growing worldwide. ENDS release mainly nicotine, humectants, and flavorings, which generate several byproducts when heated, including volatile organic compounds and ultrafine particles. The toxicity assessment of these products is emerging in human and experimental studies, but data are yet incipient to achieve truthful conclusions about their safety. To build up the knowledge about the effect of currently employed ENDS on the pathogenesis of CKD, cellular and molecular mechanisms of ENDS xenobiotic on DM, AH, and kidney functions were reviewed. Unraveling the toxic mechanisms of action and endpoints of ENDS exposures will contribute to the risk assessment and implementation of proper health and regulatory interventions.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Insuficiência Renal Crônica , Produtos do Tabaco , Compostos Orgânicos Voláteis , Humanos , Higroscópicos , Nicotina/efeitos adversos , Material Particulado , Insuficiência Renal Crônica/induzido quimicamente , Nicotiana/efeitos adversos , Xenobióticos/toxicidade
20.
Genes (Basel) ; 13(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36011267

RESUMO

The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the ß-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.


Assuntos
Pseudomonas putida , Trinitrotolueno , Regiões Antárticas , Genômica , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Trinitrotolueno/química , Trinitrotolueno/metabolismo , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA