Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.556
Filtrar
1.
Food Res Int ; 188: 114514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823885

RESUMO

Eugenol (EU), a natural bioactive compound found in various plants, offers numerous health benefits, but its application in the food and pharmaceutical industry is limited by its high volatility, instability, and low water solubility. Therefore, this study aimed to utilize the surface coating technique to develop zein-tween-80-fucoidan (Z-T-FD) composite nanoparticles for encapsulating eugenol using a nozzle simulation chip. The physicochemical characteristics of the composite nanoparticles were examined by varying the weight ratios of Z, T, and FD. Results showed that the Z-T-FD weight ratio of 5:1:15 exhibited excellent colloidal stability under a range of conditions, including pH (2-8), salt concentrations (10-500 mmol/L), heating (80 °C), and storage (30 days). Encapsulation of EU into Z-T-FD nanoparticles (0.5:5:1:15) resulted in an encapsulation efficiency of 49.29 ± 1.00%, loading capacity of 0.46 ± 0.05%, particle size of 205.01 ± 3.25 nm, PDI of 0.179 ± 0.006, and zeta-potential of 37.12 ± 1.87 mV. Spherical structures were formed through hydrophobic interaction and hydrogen bonding, as confirmed by Fourier transform infrared spectroscopy and molecular docking. Furthermore, the EU-Z-T-FD (0.5:5:1:15) nanoparticles displayed higher in vitro antioxidant properties (with DPPH and ABTS radical scavenging properties at 75.28 ± 0.16% and 39.13 ± 1.22%, respectively), in vitro bioaccessibility (64.78 ± 1.37%), and retention rates under thermal and storage conditions for EU compared to other formulations. These findings demonstrate that the Z-T-FD nanoparticle system can effectively encapsulate, protect, and deliver eugenol, making it a promising option for applications in the food and pharmaceutical industries.


Assuntos
Eugenol , Nanopartículas , Polissacarídeos , Polissorbatos , Zeína , Polissacarídeos/química , Zeína/química , Eugenol/química , Nanopartículas/química , Polissorbatos/química , Antioxidantes/química , Tamanho da Partícula , Composição de Medicamentos , Concentração de Íons de Hidrogênio
2.
PLoS One ; 19(5): e0293786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718010

RESUMO

α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. ß-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.


Assuntos
Simulação de Dinâmica Molecular , Zeína , Zeína/química , Conformação Proteica , Zea mays/química , Zea mays/metabolismo , Sequência de Aminoácidos , Água/química
3.
Int J Biol Macromol ; 269(Pt 2): 131970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697413

RESUMO

This study investigated the properties of chitosan/zein/tea polyphenols (C/Z/T) films and analyzed the release kinetics of tea polyphenols (TP) in various food simulants to enhance the sustainability and functionality of food packaging. The results revealed that TP addition enhanced the hydrophilicity, opacity and mechanical properties of film, and improved the compatibility between film matrix. 1.5 % TP film showed the lowest lightness (76.4) and the highest chroma (29.1), while 2 % TP film had the highest hue angle (1.5). However, the excessive TP (above 1 % concentration) led to a decrease in compatibility and mechanical properties of film. The TP concentration (2 %) resulted in the highest swelling degree in aqueous (750.6 %), alcoholic (451.1 %), and fatty (6.4 %) food simulants. The cumulative release of TP decreased to 16.32 %, 47.13 %, and 5.87 % with the increase of TP load in the aqueous, alcoholic, and fatty food simulants, respectively. The Peleg model best described TP release kinetics. The 2 % TP-loaded film showed the highest DPPH (97.13 %) and ABTS (97.86 %) free radical scavenging activity. The results showed TP release influenced by many factors and obeyed Fick's law of diffusion. This study offered valuable insights and theoretical support for the practical application of active films.


Assuntos
Quitosana , Embalagem de Alimentos , Polifenóis , Chá , Zeína , Quitosana/química , Polifenóis/química , Chá/química , Cinética , Zeína/química , Preparações de Ação Retardada , Antioxidantes/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
4.
Int J Biol Macromol ; 269(Pt 1): 132071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705334

RESUMO

Wound healing is a challenging clinical problem and efficient wound management is essential to prevent infection. This is best done by utilizing biocompatible materials in order to complete the healing in a rapid manner, with functional and esthetic outcomes. In this context, the zein protein fulfills the criteria of the ideal wound dressing which include non-toxicity and non-inflammatory stimulation. Zein gels containing rutin were prepared without any chemical refinement or addition of gelling agents in order to obtain a natural formulation characterized by antioxidant and anti-inflammatory properties to be proposed for the treatment of burns and sores. In vitro scratch assay showed that the proposed gel formulations promoted cell migration and a rapid gap closure within 24 h (~90 %). In addition, the in vivo activities of rutin-loaded zein gel showed a greater therapeutic efficacy in Wistar rats, with a decrease of the wound area of about 90 % at day 10 with respect to the free form of the bioactive and to DuoDERM®. The evaluation of various markers (TNF-α, IL-1ß, IL-6, IL-10) confirmed the anti-inflammatory effect of the proposed formulation. The results illustrate the feasibility of exploiting the peculiar features of rutin-loaded zein gels for wound-healing purposes.


Assuntos
Materiais Biocompatíveis , Géis , Ratos Wistar , Rutina , Cicatrização , Zeína , Rutina/química , Rutina/farmacologia , Zeína/química , Cicatrização/efeitos dos fármacos , Animais , Géis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Química Verde , Movimento Celular/efeitos dos fármacos , Humanos , Citocinas/metabolismo
5.
Int J Biol Macromol ; 268(Pt 2): 131975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692551

RESUMO

Vitamin E (VE) microencapsulation using a green surfactant emulsifier not only protects the active substance and is also environmentally friendly. In this study, we used alcohol ether glycoside as an emulsifier to prepare VE microcapsules using the biological macromolecule Zein and various polysaccharides. The resulting nano microcapsules exhibited a spherical structure, stable morphology, uniform size, and a >90% encapsulation efficiency. They also had good thermal stability and slow-release properties. Of these, xanthan gum/Zein-VE microcapsules were superior, with antioxidant properties up to 3.05-fold higher than untreated VE. We successfully developed VE nano microcapsules that meet eco-friendly and sustainable requirements, which may have applications in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Cápsulas , Polissacarídeos , Vitamina E , Zeína , Zeína/química , Vitamina E/química , Polissacarídeos/química , Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos Bacterianos/química , Tamanho da Partícula , Composição de Medicamentos/métodos
6.
Chem Biol Interact ; 396: 111037, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719172

RESUMO

Breast cancer (BC) is the most common cancer in women and is known for its tendency to spread to the bones, causing significant health issues and mortality. In this study, we aimed to investigate whether cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles (ISL@ZLH NPs) could inhibit BC-induced bone destruction and tumor metastasis in both in vitro and animal models. To evaluate the potential of ISL@ZLH NPs, we conducted various experiments. First, we assessed cell viability, colony formation, transwell migration, and wound healing assays to determine the impact of ISL@ZLH NPs on BC cell behavior. Western blotting, TRAP staining and ALP activity were performed to examine the effects of ISL@ZLH NPs on osteoclast formation induced by MDA-MB-231 cell-conditioned medium and RANKL treated RAW 264.7 cells. Furthermore, we assessed the therapeutic impact of ISL@ZLH NPs on tumor-induced bone destruction using a mouse model of BC bone metastasis. Treatment with ISL@ZLH NPs effectively suppressed BC cell proliferation, colony formation, and motility, reducing their ability to metastasize. ISL@ZLH NPs significantly inhibited osteoclast formation and the expression of factors associated with bone destruction in BC cells. Additionally, ISL@ZLH NPs suppressed JAK-STAT signaling in RAW264.7 cells. In the BCBM mouse model, ISL@ZLH NPs led to a significant reduction in osteolytic bone lesions compared to the control group. Histological analysis and TRAP staining confirmed that ISL@ZLH NPs preserved the integrity of bone structure, preventing invasive metastasis by confining tumor growth to the bone marrow cavity. Furthermore, ISL@ZLH NPs effectively suppressed tumor-induced osteoclastogenesis, a key process in BC-related bone destruction. Our findings demonstrate that ISL@ZLH NPs have the potential to inhibit BC-induced bone destruction and tumor metastasis by targeting JAK-STAT signaling pathways and suppressing tumor-induced osteoclastogenesis. These results underscore the therapeutic promise of ISL@ZLH NPs in managing BC metastasis to the bones.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Chalconas , Janus Quinases , Nanopartículas , Fosfatidilcolinas , Fatores de Transcrição STAT , Transdução de Sinais , Zeína , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Camundongos , Janus Quinases/metabolismo , Nanopartículas/química , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Fatores de Transcrição STAT/metabolismo , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/química , Chalconas/uso terapêutico , Zeína/química , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células RAW 264.7 , Movimento Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos
7.
Food Chem ; 452: 139564, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718455

RESUMO

High internal phase Pickering emulsions (HIPPEs) prepared from natural polymers have attracted much attention in the food manufactures. However, single zein-stabilized HIPPEs are poorly stable and prone to flocculation near the isoelectric point. To address this issue, in this study, zein and whey protein nanofibrils (WPN) complex nanoparticles (ZWNPs) were successfully prepared using a pH-driven method, and ZWNPs were further used as HIPPEs stabilizers. The results showed that zein and WPN were combined together through hydrogen bonding and hydrophobic interaction to form ZWNPs, and the HIPPEs stabilized by ZWNPs had excellent stability, which could effectively protect the internally encapsulated lycopene and improve the bioaccessibility of lycopene. In conclusion, this study provides a new strategy for the preparation of stable hydrophobic protein-based HIPPEs, represented by zein.


Assuntos
Emulsões , Interações Hidrofóbicas e Hidrofílicas , Licopeno , Proteínas do Soro do Leite , Zeína , Zeína/química , Emulsões/química , Licopeno/química , Proteínas do Soro do Leite/química , Nanofibras/química , Nanopartículas/química
8.
Food Chem ; 452: 139520, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723573

RESUMO

The current study addresses the growing demand for sustainable plant-based cheese alternatives by employing molecular docking and deep learning algorithms to optimize protein-ligand interactions. Focusing on key proteins (zein, soy, and almond protein) along with tocopherol and retinol, the goal was to improve texture, nutritional value, and flavor characteristics via dynamic simulations. The findings demonstrated that the docking analysis presented high accuracy in predicting conformational changes. Flexible docking algorithms provided insights into dynamic interactions, while analysis of energetics revealed variations in binding strengths. Tocopherol exhibited stronger affinity (-5.8Kcal/mol) to zein compared to retinol (-4.1Kcal/mol). Molecular dynamics simulations offered comprehensive insights into stability and behavior over time. The integration of machine learning algorithms improved the classification and the prediction accuracy, achieving a rate of 71.59%. This study underscores the significance of molecular understanding in driving innovation in the plant-based cheese industry, facilitating the development of sustainable alternatives to traditional dairy products.


Assuntos
Queijo , Simulação de Acoplamento Molecular , Proteínas de Plantas , Prunus dulcis , Tocoferóis , Vitamina A , Zeína , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Queijo/análise , Prunus dulcis/química , Vitamina A/química , Vitamina A/metabolismo , Tocoferóis/química , Tocoferóis/metabolismo , Zeína/química , Zeína/metabolismo , Simulação de Dinâmica Molecular , Aprendizado de Máquina , Glycine max/química , Glycine max/metabolismo , Máquina de Vetores de Suporte
9.
Food Res Int ; 186: 114340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729695

RESUMO

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Assuntos
Etilenos , Embalagem de Alimentos , Frutas , Poliuretanos , Óleo de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalagem de Alimentos/métodos , Porosidade , Frutas/química , Óleo de Soja/química , Zeína/química , Adsorção , Polímeros/química , Solanum lycopersicum/química , Interações Hidrofóbicas e Hidrofílicas
10.
Food Chem ; 452: 139562, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749140

RESUMO

The growing global interest in physical and environmental health has led to the development of plant-based products. Although soy protein and wheat gluten are commonly utilized, concerns regarding gluten-related health issues have driven exploration into alternative proteins. Zein has emerged as a promising option. This research investigated the impact of extraction methods on zein characteristics and the structures of SPI-zein composite gels. Different extraction methods yielded zein with protein contents ranging from 48.12 % to 64.34 %. Ethanol-extracted Z1 and Z3, obtained at different pH conditions, exhibited zeta potential of -3.25 and 5.43 mV, respectively. They displayed similar characteristics to commercial zein and interacted comparably in composite gels. Conversely, alkaline-extracted Z2 had a zeta potential of -2.37 mV and formed distinct gels when combined with SPI. These results indicated that extraction methods influence zein behaviour in composite gels, offering possibilities for tailored formulations and expanding zein's applications, particularly in gluten-free plant-based products.


Assuntos
Géis , Zeína , Zeína/química , Géis/química , Glutens/química , Glutens/isolamento & purificação , Triticum/química , Proteínas de Soja/química , Proteínas de Soja/isolamento & purificação
11.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611893

RESUMO

Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.


Assuntos
Carcinoma , Metformina , MicroRNAs , Nanopartículas , Zeína , Animais , Camundongos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP , Polímeros
12.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567436

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Assuntos
Artrite Experimental , Escina , Gelatina , Nanopartículas , Ratos Wistar , Zeína , Animais , Gelatina/química , Zeína/química , Ratos , Nanopartículas/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Escina/química , Escina/farmacologia , Masculino , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Colágeno/química
13.
Int J Biol Macromol ; 266(Pt 2): 131284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569984

RESUMO

Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.


Assuntos
Antioxidantes , Disponibilidade Biológica , Nanogéis , Quercetina , Proteínas do Soro do Leite , Zeína , Quercetina/química , Quercetina/farmacologia , Proteínas do Soro do Leite/química , Zeína/química , Antioxidantes/química , Antioxidantes/farmacologia , Nanogéis/química , Concentração de Íons de Hidrogênio , Ácido Acético/química , Polietilenoimina/química , Polietilenoglicóis/química , Estabilidade de Medicamentos , Portadores de Fármacos/química
14.
Int J Biol Macromol ; 266(Pt 2): 131305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569990

RESUMO

The ability of 3D printing to encapsulate, protect, and enhance lutein bioaccessibility was investigated under various printing conditions. A spiral-cube-shaped geometry was used to investigate the effects of printing parameters, namely zein concentration (Z; 20, 40, and 60 %) and printing speed (PS; 4, 8, 14, and 20 mm/s). Coaxial extrusion 3D printing was used with lutein-loaded zein as the internal flow material, and corn starch paste as the external flow material. The viscosities of the inks, microstructural properties, storage stability, and bioaccessibility of encapsulated lutein were determined. The sample printed with a zein concentration of 40 % at a printing speed of 14 mm/s (Z-40/PS-14) exhibited the best shape integrity. When lutein was entrapped in starch/zein gels (Z-40/PS-14), only 39 % of lutein degraded after 21 days at 25 °C, whereas 78 % degraded at the same time when crude lutein was studied. Similar improvements were also observed after storing at 50 °C for 21 days. Furthermore, after simulated digestion, the bioaccessibility of encapsulated lutein (9.8 %) was substantially higher than that of crude lutein (1.5 %). As a result, the developed delivery system using 3D printing could be an effective strategy for enhancing the chemical stability and bioaccessibility of bioactive compounds (BCs).


Assuntos
Géis , Luteína , Impressão Tridimensional , Amido , Zeína , Luteína/química , Zeína/química , Amido/química , Géis/química , Disponibilidade Biológica
15.
Int J Biol Macromol ; 266(Pt 2): 131322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574924

RESUMO

In this study, the effect of oregano essential oil loaded in zein-pectin-chitosan (Zein-PC-CS-OEO) nanoparticles on the quality of Harbin red sausage during storage was examined. Zein-PC-CS-OEO nanoparticles exhibit the better encapsulation efficiency, antioxidant and antibacterial properties than these of other prepared nanoparticles, which were subsequently incorporated into Harbin red sausage with different concentrations. The physicochemical properties, bacterial community structure, and flavor characteristics of the Harbin red sausage were determined. Both thiobarbituric acid values and the growth of dominant spoilage bacteria in Harbin red sausage are inhibited by Zein-PC-CS-OEO nanoparticles, while the total aerobic bacteria count is reduced. These results indicate that the storage quality of Harbin red sausage is improved by Zein-PC-CS-OEO nanoparticles. It is worth noting that the shelf life of Harbin red sausage supplemented with 0.1 % Zein-PC-CS-OEO nanoparticles is extended to 9 d, and the flavor characteristics of which are better maintained. This study provides a new approach to extend the application of essential oil and improve the storage quality of Harbin red sausage.


Assuntos
Quitosana , Armazenamento de Alimentos , Produtos da Carne , Nanopartículas , Óleos Voláteis , Origanum , Pectinas , Zeína , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Zeína/química , Quitosana/química , Origanum/química , Nanopartículas/química , Produtos da Carne/microbiologia , Produtos da Carne/análise , Pectinas/química , Armazenamento de Alimentos/métodos , Conservação de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química
16.
Int J Biol Macromol ; 266(Pt 2): 131368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580025

RESUMO

This study presents an innovative approach for targeted drug delivery through the development of Glycyrrhizic acid-loaded zein nanoparticles (GA-LNPs) as a proficient carrier system. The juxtaposition of zein, a hydrophobic biological macromolecule as a protein carrier, and Glycyrrhizic acid (GA), a hydrophilic therapeutic compound, exemplifies the adaptability of hydrocolloids within cutting-edge drug delivery systems. The characterization and functional traits of research encompass multifaceted analyses of natural macromolecules, which elucidate the homogeneous and spherical morphology of GA-LNPs with an average size of 170.49 nm. The controlled drug release profile of GA, orchestrated under simulated gastrointestinal conditions, adheres to diffusion-based Higuchi kinetics, reflecting the controlled release of the natural macromolecules. The intermolecular interactions among Zein, GA, and cross-linker EDC, facilitated through molecular dynamics simulations, fortify the structural integrity of the encapsulation matrix. In Vitro studies revealed enhanced cellular uptake of GA-LNPs in MCF-7 breast cancer cells. This cellular internalization was further confirmed through cytotoxicity assessments using MTT and apoptosis assays (fluorescence microscopy), which demonstrated the prominent anticancer effects of GA-LNPs on MCF-7 in time/dose-dependent manner. The successful formulation of GA-LNPs, coupled with their sustained release and potent anticancer properties, makes them a potential platform for advanced targeted therapeutic strategies in biomedical applications.


Assuntos
Neoplasias da Mama , Portadores de Fármacos , Ácido Glicirrízico , Nanopartículas , Zeína , Ácido Glicirrízico/química , Ácido Glicirrízico/farmacologia , Zeína/química , Humanos , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Células MCF-7 , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos , Simulação de Dinâmica Molecular , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Simulação por Computador , Sobrevivência Celular/efeitos dos fármacos
17.
Int J Biol Macromol ; 269(Pt 1): 131846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663702

RESUMO

To improve the compatibility of gelatin (GA) and hydroxypropyl methylcellulose (HPMC), we investigated the effects of zein-pectin composite particles (ZCPs) with various zein/pectin ratios (1:0, 1:0.5, 1:1, 1:1.5, and 1:2) on the physical stability, microstructure, and rheological properties of the GA/HPMC water-water systems. With increasing pectin ratio, the particle size of the composite particles increased from 234.53 ± 1.48 nm to 1111.00 ± 26.91 nm, and their zeta potential decreased from 20.60 mV to below -34.77 mV. Macroscopic and microstructure observations indicated that pectin-modified ZCPs could effectively inhibit phase separation behavior between GA and HPMC. Compared to pure HPMC, the GA/HPMC water-water systems possessed a higher viscosity and dynamic modulus at room temperatures but lower gel temperatures (reduction of about 11 %). The viscosity and modulus of the water-water systems increased with increasing pectin ratio in ZCPs. However, the ratio had no impact on the gel-sol (sol-gel) transition temperatures (not statistically significant (P < 0.05)). This study may serve as a reference for advancing the processability of HPMC.


Assuntos
Gelatina , Derivados da Hipromelose , Pectinas , Reologia , Água , Zeína , Pectinas/química , Gelatina/química , Derivados da Hipromelose/química , Zeína/química , Água/química , Viscosidade , Tamanho da Partícula
18.
Int J Biol Macromol ; 268(Pt 2): 131660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636766

RESUMO

The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.


Assuntos
Quitosana , Nanopartículas , Molhabilidade , Quitosana/química , Nanopartículas/química , Celulose/química , Chuva/química , Zeína/química , Resistência à Tração , Água/química , Prunus avium/química , Permeabilidade
19.
Int J Biol Macromol ; 268(Pt 2): 131764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657935

RESUMO

This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.


Assuntos
Géis , Nanopartículas , Prolaminas , Resveratrol , Amido , Amido/química , Resveratrol/química , Resveratrol/farmacocinética , Nanopartículas/química , Géis/química , Prolaminas/química , Zeína/química , Portadores de Fármacos/química , Triticum/química , Gliadina/química
20.
Food Chem ; 451: 139450, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670018

RESUMO

The effects of postharvest ripening of corn on the mechanisms of starch and protein interactions were investigated using molecular dynamics and several chemical substances. Sodium dodecyl sulfate (SDS) treatment all significantly affected the starch content, molecular weight of proteins, relative crystallinity, pasting characteristics and dynamic viscoelasticity in samples before and after postharvest ripening. In the corn that had not undergone postharvest ripening, there were also significant electrostatic interactions and hydrogen bonds between starch and protein. In addition, molecular dynamics had demonstrated that the forces between starch and protein in corn were mainly hydrophobic interactions, electrostatic interaction, and hydrogen bonds. Compared with zein, corn glutelin was more tightly bound to starch. The binding energy of starch to both proteins was reduced in after postharvest-ripened corn. This study laid a rationale for investigating the change mechanism of corn postharvest ripening quality and improving processing property and edible quality of corn.


Assuntos
Proteínas de Plantas , Amido , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/química , Zea mays/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Zeína/química , Zeína/metabolismo , Manipulação de Alimentos , Peso Molecular , Viscosidade , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...