Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
1.
Se Pu ; 41(1): 94-103, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36633081

RESUMO

Food poisoning by toxic mushrooms occurs frequently worldwide. It is one of the most common food poisoning events and the main cause of death. Amanita peptide toxins are the most common lethal toxins in poisonous mushrooms. Presently, a novel method based on ultra performance liquid chromatography-quadrupole electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q/Orbitrap HRMS) was developed for the determination of five amanitapeptide toxins (α-amanitin, ß-amanitin, γ-amanitin, phalloidin, and phallacidin). Because the isotope summit of α-amanitin affects the detection of ß-amanitin, it cannot be distinguished by low resolution mass spectrometry. Therefore, experimental conditions including chromatography and mass spectrometry were explored in detail. The five peptide toxins were extracted from poisonous mushrooms with pure water and filtered through a 0.22 µm teflon microporous membrane. The procedure was rapid, simple, and environmentally friendly. Chromatographic separation was performed on a strong polarity HSS T3 column (100 mm×2.0 mm, 2.1 µm) with gradient elution using acetonitrile and 5 mmol/L ammonium acetate containing 0.1% (v/v) formic acid as mobile phases at a flow rate of 0.3 mL/min. The column temperature was set to 40 ℃. The analytes were ionized using a heating electrospray ionization source and collected in positive ion mode. Full scanning/data-dependent secondary mass spectrometry (Full mass-ddMS2) mode was used for qualitative analysis of the targets within 10 min. The target ion selective scan (Targeted-SIM) mode was used for quantification by external standard calibration. The measured and theoretical values of the exact mass and the MS2 fragment ions of the five compounds were within an error of 5×10-6. Method validation was performed according to the criteria recommended by the Chinese National Standard. All the compounds showed an excellent linear relationship in the range of 1.0-20.0 µg/L. The correlation coefficients (r) ranged from 0.9974 to 0.9989. The limit of detection was 0.006 mg/kg for all five compounds. Recoveries ranged from 81.8% to 102.4%. There was no matrix effect in the blank mushroom sample for the five compounds, and the relative standard deviations ranged from 3.2% to 8.3%. This method provides abundant compound characteristic mass information, such as retention time, exact mass, fragment ions, and other information. The data can be used to identify suspected compounds based on the extracted ion flow diagram and isotope distribution information. Comparison between the actual exact mass and the theoretical exact mass, combined with the fragment ions enables identification of the structures of unknown compounds and collision methods, which can be confirmed in the absence of standard materials. In this study, the isomer of γ-amanitin was identified as amaninamide. The novel method is simple, accurate, specific, and sensitive. The method permits the rapid qualitative and quantitative detection of compound in public health emergency settings and will provide reliable technical support for the rapid screening of such toxic compounds and the structural locking of unknown toxins in the future.


Assuntos
Doenças Transmitidas por Alimentos , Micotoxinas , Amanita , Alfa-Amanitina , Eletricidade Estática , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Micotoxinas/análise , Amanitinas/análise , Cromatografia Líquida
2.
Mol Phylogenet Evol ; 178: 107644, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243328

RESUMO

Ectomycorrhizal fungi (ECM) sustain nutrient recycling in most terrestrial ecosystems, yet we know little about what major biogeographical events gave rise to present-day diversity and distribution patterns. Given the strict relationship between some ECM lineages and their hosts, geographically well-sampled phylogenies are central to understanding major evolutionary processes of fungal biodiversity patterns. Here, we focus on Amanita sect. Vaginatae to address global diversity and distribution patterns. Ancestral-state-reconstruction based on a 4-gene timetree with over 200 species supports an African origin between the late Paleocene and the early Eocene (ca. 56 Ma). Major biogeographic "out-of-Africa" events include multiple dispersal events to Southeast Asia (ca. 45-21 Ma), Madagascar (ca. 18 Ma), and the current Amazonian basin (ca. 45-36 Ma), the last two likely trans-oceanic. Later events originating in Southeast Asia involve Nearctic dispersal to North America (ca. 20-5 Ma), Oceania (Australia and New Zealand; ca. 15 Ma), and Europe (ca. 10-5 Ma). Subsequent dispersals were also inferred from Southeast Asia to East Asia (ca. 4 Ma); from North America to East Asia (ca. 11-8 Ma), Southeast Asia (ca. 19-2 Ma), Northern Andes (ca. 15 Ma), and Europe (ca. 15-2 Ma), respectively; and from the Amazon to the Caribbean region (ca. 25-20 Ma). Finally, we detected a significant increase in the net diversification rates in the branch leading to most northern temperate species in addition to higher state-dependent diversification rates in temperate lineages, consistent with previous findings. These results suggest that species of sect. Vaginatae likely have higher dispersal ability and higher adaptability to new environments, in particular compared to those of its sister clade, sect. Caesareae. Overall, the much wider distribution of A. sect. Vaginatae, from pan-tropical to pan-arctic, provides a unique window to understanding niche conservatism across a species-rich clade of ECM fungi.


Assuntos
Amanita , Ecossistema , Filogenia , Evolução Biológica , América , Filogeografia
3.
Wilderness Environ Med ; 33(4): 412-416, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210279

RESUMO

Ingestion of Amanita muscaria mushrooms results in transient central nervous system excitation and depression mediated by its components, ibotenic acid and muscimol. The mushroom is distributed worldwide and ingestions occur with some frequency. Although these ingestions have traditionally been considered benign, serious complications can occur. We present 2 cases of serious toxicity, including a fatality. The first case was a 44-y-old man who presented to the emergency department (ED) after cardiopulmonary arrest approximately 10 h after ingesting 4 to 5 dried A muscaria mushroom caps, which he used for their mind-altering effects. Despite successful resuscitation, he remained unresponsive and hypotensive and died 9 days later. The second case was a 75-y-old man who presented to the ED after accidentally consuming one large A muscaria mushroom cap he foraged in Eastern Turkey. The patient initially presented to the ED with hallucinations followed by lethargy, and he was intubated for airway protection. The patient's condition gradually improved, and he made a full recovery. A muscaria ingestion should not be considered benign as serious outcomes do occur. An understanding of how the main neuroactive chemicals, ibotenic acid and muscimol, affect the brain can help anticipate outcomes. Several high-risk features that portend a more serious course are identified.


Assuntos
Intoxicação Alimentar por Cogumelos , Masculino , Humanos , Ácido Ibotênico , Muscimol , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Amanita
4.
Clin Toxicol (Phila) ; 60(11): 1251-1265, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129244

RESUMO

BACKGROUND AND AIMS: Amanita phalloides poisoning causes severe liver damage which may be potentially fatal. Several treatments are available, but their effectiveness has not been systematically evaluated. We performed a systematic review to investigate the effect of the most commonly used therapies: N-acetylcysteine (NAC), benzylpenicillin (PEN), and silibinin (SIL) on patient outcomes. In addition, other factors contributing to patient outcomes are identified. METHODS: We searched MEDLINE and Embase for case series and case reports that described patient outcomes after poisoning with amanitin-containing Amanita mushrooms. We extracted clinical characteristics, treatment details, and outcomes. We used the liver item from the Poisoning Severity Score (PSS) to categorize intoxication severity. RESULTS: We included 131 publications describing a total of 877 unique cases. The overall survival rate of all patients was 84%. Patients receiving only supportive care had a survival rate of 59%. The use of SIL or PEN was associated with a 90% (OR 6.40 [3.14-13.04]) and 89% (OR 5.24 [2.87-9.56]) survival rate, respectively. NAC/SIL combination therapy was associated with 85% survival rate (OR 3.85 [2.04, 7.25]). NAC/PEN/SIL treatment group had a survival rate of 76% (OR 2.11 [1.25, 3.57]). Due to the limited number of cases, the use of NAC alone could not be evaluated. Additional analyses in 'proven cases' (amanitin detected), 'probable cases' (mushroom identified by mycologist), and 'possible cases' (neither amanitin detected nor mushroom identified) showed comparable results, but the results did not reach statistical significance. Transplantation-free survivors had significantly lower peak values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total serum bilirubin (TSB), and international normalized ratio (INR) compared to liver transplantation survivors and patients with fatal outcomes. Higher peak PSS was associated with increased mortality. CONCLUSION: Based on data available, no statistical differences could be observed for the effects of NAC, PEN or SIL in proven poisonings with amanitin-containing mushrooms. However, monotherapy with SIL or PEN and combination therapy with NAC/SIL appear to be associated with higher survival rates compared to supportive care alone. AST, ALT, TSB, and INR values are possible predictors of potentially fatal outcomes.


Assuntos
Amanitinas , Intoxicação Alimentar por Cogumelos , Humanos , Intoxicação Alimentar por Cogumelos/tratamento farmacológico , Intoxicação Alimentar por Cogumelos/complicações , Amanita , Alanina Transaminase , Acetilcisteína/uso terapêutico , Silibina/uso terapêutico , Penicilina G/uso terapêutico
5.
Artigo em Chinês | MEDLINE | ID: mdl-36052592

RESUMO

Mistakenly picking and eating poisonous mushrooms can cause acute poisoning. In August 2020, Qingdao Hospital of Traditional Chinese Medicine handled a poisonous mushroom poisoning incident, conducted epidemiological investigation on all poisoned patients, collected suspicious food, clinical manifestations, clinical test results and treatment conditions, and identified the mushrooms as Amanita fuliginea poisoning after morphological identification. In this incident, 6 people ate grey goose paste, of which 4 were sick with a incubation period of 6~12 h. The clinical manifestations were gastrointestinal symptoms such as nausea, vomiting and diarrhea, liver and kidney damage. After symptomatic support treatment, hemoperfusion or continuous hemofiltration treatment, the patients were cured and discharged. It is suggested to strengthen the popular science education on poisonous mushroom poisoning and improve the ability of identification and clinical treatment of poisonous mushrooms in grass-roots medical institutions.


Assuntos
Hemoperfusão , Intoxicação Alimentar por Cogumelos , Amanita , Humanos , Fígado , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/epidemiologia , Intoxicação Alimentar por Cogumelos/terapia
6.
Toxicon ; 219: 106927, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150415

RESUMO

The paper presents results of AI diagnostics and treatment across the period of 2004-2020 pointing to the efficacy of two particular protocols. METHOD: Quantitative determination of amanitins in blood (ATOs) and urine (ATOu) performed by the original ELISA kit, indicated upon mycological history and clinical symptoms of poisoning. ATOu positive cases were recommended our protocol; ATOu negative results excluded amanitin poisoning. RESULTS: out of 2876 fungal poisonings registered in Slovakia during the subjected period, were 698 AI suspected cases. In 557 of them, was AI reliably excluded, in 141 confirmed. Urinary ATOu correlated with the severity of poisoning in the range of 6-47 h after mushroom ingestion, without false negativity. Serum ATOs had no diagnostic value. 129 patients with confirmed AI received full treatment protocol with antidotes of penicillin plus silibinin. In this group died two patients of acute kidney injury in the early stages of poisoning and 127 patients were recovered. Silibinin without penicillin was used in 12 patients. One of them undergone liver transplantation and four patients died of fulminant liver failure, respectively intracranial hemorrhage. Treatment failure in the PNC + silibinin protocol was 1.5 % (2 of 127 patients), silibinin alone being 41.7 % (5 of 12 patients, p = 0.00058). CONCLUSION: Early diagnostics of amanitin intoxication based on mycological and clinical history and subsequent determination of urinary amanitin levels (ATOu) allows early initiation of treatment. The use of treatment protocol with antidotes of PNC and silibinin is of high therapeutic efficacy. The omission of PNC from the treatment protocol significantly worsens patients' prognosis.


Assuntos
Antídotos , Intoxicação Alimentar por Cogumelos , Humanos , Antídotos/uso terapêutico , Silibina/uso terapêutico , Eslováquia/epidemiologia , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Amanita , Amanitinas , Penicilinas/uso terapêutico
7.
Mikrochim Acta ; 189(9): 322, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932340

RESUMO

α-Amanitin is often considered the most poisonous mushroom toxin produced by various mushroom species, which are hard to identify from edible, non-toxic mushrooms. Conventional detection methods require expensive and bulky equipment or fail to meet high analytical sensitivity. We developed a smartphone-based fluorescence microscope platform to detect α-amanitin from dry mushroom tissues. Antibody-nanoparticle conjugates were captured by immobilized antigen-hapten conjugates while competing with the free analytes in the sample. Captured fluorescent nanoparticles were excited at 460 nm and imaged at 500 nm. The pixel numbers of such nanoparticles in the test zone were counted, showing a decreasing trend with increasing analyte concentration. The detection method exhibited a low detection limit (1 pg/mL), high specificity, and selectivity, allowing us to utilize a simple rinsing for toxin extraction and avoiding the need for high-speed centrifugation. In addition, this assay's short response time and portable features enable field detection of α-amanitin from amanitin-producing mushrooms.


Assuntos
Alfa-Amanitina , Toxinas Biológicas , Amanita , Imunoensaio , Microfluídica , Smartphone
9.
Food Chem Toxicol ; 166: 113198, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671903

RESUMO

Amanita phalloides is one of the most toxic mushrooms worldwide, being responsible for the majority of human fatal cases of mushroom intoxications. α-Amanitin, the most deleterious toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and renal failure. Herein, we used cyclosporine A after it showed potential to displace RNAP II α-amanitin in silico. That potential was not confirmed either by the incorporation of ethynyl-UTP or by the monitoring of fluorescent RNAP II levels. Nevertheless, concomitant incubation of cyclosporine A with α-amanitin, for a short period, provided significant protection against its toxicity in differentiated HepaRG cells. In mice, the concomitant administration of α-amanitin [0.45 mg/kg intraperitoneal (i.p.)] with cyclosporine A (10 mg/kg i.p. plus 2 × 10 mg/kg cyclosporine A i.p. at 8 and 12 h post α-amanitin) resulted in the full survival of α-amanitin-intoxicated mice, up to 30 days after the toxin's administration. Since α-amanitin is a substrate of the organic-anion-transporting polypeptide 1B3 and cyclosporine A inhibits this transporter and is a potent anti-inflammatory agent, we hypothesize that these mechanisms are responsible for the protection observed. These results indicate a potential antidotal effect of cyclosporine A, and its safety profile advocates for its use at an early stage of α-amanitin intoxications.


Assuntos
Alfa-Amanitina , Intoxicação Alimentar por Cogumelos , Alfa-Amanitina/metabolismo , Alfa-Amanitina/toxicidade , Amanita , Animais , Antídotos/farmacologia , Ciclosporina/toxicidade , Humanos , Fígado , Camundongos
10.
Fungal Genet Biol ; 162: 103717, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764233

RESUMO

Amanita muscaria is an ectomycorrhizal mushroom that commonly grows at metal-polluted sites. Sporocarps from the lead smelter-polluted area near Príbram (Central Bohemia, Czech Republic) showed elevated concentrations of Cd and Zn. Size exclusion chromatography of the cell extracts of the sporocarps from both polluted and unpolluted sites indicated that substantial part of intracellular Cd and Zn was sequestered in 6-kDa complexes, presumably with metallothionein(s) (MT). When the cultured mycelial isolates were compared, those from Príbram were more Cd-tolerant and accumulated slightly less Cd and Zn than those from the unpolluted site. The analysis of the available A.muscaria sequence data returned a 67-amino acid (AA) MT encoded by the AmMT1 gene. Weak Cd and Zn responsiveness of AmMT1 in the mycelia suggested its metal homeostasis function in A.muscaria, rather than a major role in detoxification. The AmMT1 belongs to a ubiquitous peptide group in the Agaricomycetes consisting of 60-70-AA MTs containing seven cysteinyl domains and a conserved histidyl, features observed also in a newly predicted, atypical 45-AA RaMT1 of the Zn-accumulator Russula bresadolae in which the C-terminal cysteinyl domains VI and VII are missing. Heterologous expression in metal-sensitive yeast mutants indicated that AmMT1 and RaMT1 encode functional peptides that can protect cells against Cd, Zn, and Cu toxicity. The metal protection phenotype observed in yeasts with mutant variants of AmMT1 and RaMT1 further indicated that the conserved histidyl seems to play a structural, not metal binding role, and the cysteinyls of the C-terminal domains VI and VII are important for Cu binding. The data provide an important insight into the metal handling of site-associated ectomycorrhizal species disturbed by excess metals and the properties of MTs common in Agaricomycetes.


Assuntos
Metalotioneína , Micorrizas , Amanita/genética , Amanita/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Micorrizas/genética , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(20): e2201113119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533275

RESUMO

The deadly toxin α-amanitin is a bicyclic octapeptide biosynthesized on ribosomes. A phylogenetically disjunct group of mushrooms in Agaricales (Amanita, Lepiota, and Galerina) synthesizes α-amanitin. This distribution of the toxin biosynthetic pathway is possibly related to the horizontal transfer of metabolic gene clusters among taxonomically unrelated mushrooms with overlapping habitats. Here, our work confirms that two biosynthetic genes, P450-29 and FMO1, are oxygenases important for amanitin biosynthesis. Phylogenetic and genetic analyses of these genes strongly support their origin through horizontal transfer, as is the case for the previously characterized biosynthetic genes MSDIN and POPB. Our analysis of multiple genomes showed that the evolution of the α-amanitin biosynthetic pathways in the poisonous agarics in the Amanita, Lepiota, and Galerina clades entailed distinct evolutionary pathways including gene family expansion, biosynthetic genes, and genomic rearrangements. Unrelated poisonous fungi produce the same deadly amanitin toxins using variations of the same pathway. Furthermore, the evolution of the amanitin biosynthetic pathway(s) in Amanita species generates a much wider range of toxic cyclic peptides. The results reported here expand our understanding of the genetics, diversity, and evolution of the toxin biosynthetic pathway in fungi.


Assuntos
Amanitinas , Toxinas Biológicas , Amanita/genética , Amanitinas/genética , Evolução Biológica , Vias Biossintéticas/genética , Transferência Genética Horizontal
12.
Toxicon ; 212: 55-61, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398159

RESUMO

Mushroom poisoning is a deeply concerning food safety problem that affects the public in China every year. Although there are statistics on the number of poisonings and incidents, there is a lack of data on the types of toxic mushrooms, clinical manifestations and toxins. A case of wild mushroom poisoning occurred in Xiamen. Descriptive epidemiological investigation, toxins detection, and morphological and phylogenetic identification were immediately performed. The patients exhibited typical neurotoxic symptoms after consuming wild mushrooms, including chills, vertigo, drowsiness, salivation and coma. The average incubation period was 30 min. Treatments that were adopted included fluid infusion, gastric lavage, catharsis, and liver protection treatment. All patients recovered within 10 days. The species was identified as Amanita pseudosychnopyramis, and its contents of muscarine, muscimol and ibotenic acid were 170.3 ± 5.9 mg/kg, 835.4 ± 43.1 mg/kg and 637.9 ± 54.8 mg/kg in dry weight, respectively, as detected by ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). To our knowledge, this is the first report of Amanita pseudosychnopyramis poisoning worldwide.


Assuntos
Intoxicação Alimentar por Cogumelos , Amanita/química , Cromatografia Líquida , Humanos , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/epidemiologia , Intoxicação Alimentar por Cogumelos/terapia , Filogenia , Espectrometria de Massas em Tandem
13.
Scand J Trauma Resusc Emerg Med ; 30(1): 20, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305697

RESUMO

BACKGROUND: Geopolitical and climate changes form the background of the current migration crisis. It has many faces. One of them are the tragic cases of poisoning of refugees due to eating wild forest mushrooms for socioeconomic reasons in the Western and Northern European countries. The most serious food poisonings in Europe, but not only, are caused by lamellar mushrooms, the most dangerous being Amanita phalloides. Its poisonous properties can be attributed to α-amanitin, an RNA polymerase II inhibitor. Unfortunately, as it is characterized by a delayed onset of symptoms, A. phalloides poisoning has a high risk of complications. CASE PRESENTATION: Our article presents a case of A. phalloides poisoning in a 28-year-old man, in which the responding medical emergency unit made errors in diagnosis and treatment. Since the correct diagnosis was made too late, the typical treatment of A. phalloides poisoning was ineffective. The patient suffered a life-threatening liver failure and needed liver transplant from a deceased donor. CONCLUSIONS: Mushroom poisoning is a particularly important problem not only in countries with a mushroom picking tradition, but also-due to the inflow of refugees-in countries where mushroom poisoning was very rare until recently. In such cases it is crucial to quickly implement the correct procedure, as this can prevent the need for liver transplant or even death. This is a particularly important consideration for the first medical professionals to contact the patient, especially in cases where the patient reports mushrooms consumption and presents alarming symptoms of the gastrointestinal tract. Such situations cannot be underestimated and ignored.


Assuntos
Intoxicação Alimentar por Cogumelos , Adulto , Amanita , Hospitais , Humanos , Masculino , Erros Médicos , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia
14.
Hepatobiliary Pancreat Dis Int ; 21(3): 257-266, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35168873

RESUMO

BACKGROUND: Amanita poisoning as a foodborne disease has raised concerning mortality issues. Reducing the interval between mushroom ingestion and medical intervention could greatly influence the outcomes of Amanita poisoning patients, while treatment is highly dependent on a confirmed diagnosis. To this end, we developed an early detection-guided intervention strategy by optimizing diagnostic process with performing α-amanitin detection, and further explored whether this strategy influenced the progression of Amanita poisoning. METHODS: This study was a retrospective analysis of 25 Amanita poisoning patients. Thirteen patients in the detection group were diagnosed mainly based on α-amanitin detection, and 12 patients were diagnosed essentially on the basis of mushroom consumption history, typical clinical patterns and mushroom identification (conventional group). Amanita poisoning patients received uniform therapy, in which plasmapheresis was executed once confirming the diagnosis of Amanita poisoning. We compared the demographic baseline, clinical and laboratory data, treatment and outcomes between the two groups, and further explored the predictive value of α-amanitin concentration in serum. RESULTS: Liver injury induced by Amanita appeared worst at the fourth day and alanine aminotransferase (ALT) rose higher than aspartate aminotransferase (AST). The mortality rate was 7.7% (1/13) in the detection group and 50.0% (6/12) in the conventional group (P = 0.030), since patients in the detection group arrived hospital much earlier and received plasmapheresis at the early stage of disease. The early detection-guided intervention helped alleviate liver impairment caused by Amanita and decreased the peak AST as well as ALT. However, the predictive value of α-amanitin concentration in serum was still considered limited. CONCLUSIONS: In the management of mushroom poisoning, consideration should be given to the rapid detection of α-amanitin in suspected Amanita poisoning patients and the immediate initiation of medical treatment upon a positive toxin screening result.


Assuntos
Amanita , Intoxicação Alimentar por Cogumelos , Alfa-Amanitina , Humanos , Fígado , Intoxicação Alimentar por Cogumelos/complicações , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Estudos Retrospectivos
15.
Mini Rev Med Chem ; 22(13): 1772-1788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35049431

RESUMO

Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential, and stereo- chemical properties. This division of biologically active congeners with multiple circular rings has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for the establishment of drugs because of their close resemblance and biocompatibility with proteins, and these bio-actives are debated as feasible, realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms, including ßs-leucyl-tryptophano-histidine bridged and tryptophanocysteine bridged peptide macrobicycles. The unique structural features, structure-activity relationship, synthetic routes, bioproperties, and therapeutic potential of the natural BPMs are also discussed.


Assuntos
Celosia , Amanita/metabolismo , Celosia/metabolismo , Peptídeos/química , Peptídeos Cíclicos/química
16.
Environ Sci Pollut Res Int ; 29(21): 31923-31942, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35013958

RESUMO

The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (Chlorophyllum rhacodes, Clavariadelphus truncatus, Clitocybe nebularis, Hydnum repandum, Hygrophorus pudorinus, Infundibulicybe gibba, Lactarius deliciosus, L. piperatus, L. salmonicolor, Macrolepiota mastoidea, Russula grata, Suillus granulatus, and Tricholoma imbricatum), inedible (Amanita pantherina, Geastrum triplex, Gloeophyllum sepiarium, Hypholoma fasciculare, Phellinus vorax, Pholiota limonella, Russula anthracina, and Tapinella atrotomentosa), and poisonous mushroom species (Amanita pantherina and Hypholoma fasciculare) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). The element contents of the mushrooms were determined to be 18.0-1239.1, 0.2-4.6, 0.1-3.4, 0.2-3.2, 1.0-8.9, 3.3-59.9, 3.7-220.4, 21.3-154.1, 6.4-754.3, 15.8-17,473.0, 413.0-5943.0, and 2803.0-24,490.0 mg·kg-1, respectively. In addition to metal contents, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushrooms were also calculated. Both DIM and HRI values of mushroom species except L. salmanicolor, M. mastoidea, and R. grata were within the legal limits. However, it was determined that the Fe content of L. salmanicolor and M. mastoidea and Cd content of R. grata were above the legal limits.


Assuntos
Agaricales , Parques Recreativos , Amanita , Mar Negro , Cádmio , Metais/análise , Medição de Risco
17.
Clin Toxicol (Phila) ; 60(3): 386-388, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34399649

RESUMO

INTRODUCTION: Mushroom poisonings occur every year in Israel, mainly in the fall and winter seasons. During the fall/winter of 2020, we experienced an increase in calls to the Israel Poison Information Center (IPIC) concerning mushroom ingestions. METHODS: We conducted a retrospective review of mushroom poisonings reported to the IPIC during 2015-2020 using the electronic IPIC data base. For all calls about mushroom poisonings in 2020, we extracted data on patient demographics, geographic location of the picked mushroom, mycological identification (if available), IPIC recommendations, and clinical outcomes. RESULTS: The IPIC received 105 calls concerning mushrooms ingestion in 2020, 65 (62%) during the last quarter. This corresponded to a 2.5-fold increase compared to the median annual rate between 2015 and 2019, and a 5-fold increase compared to the same fall/winter period in 2019. Most cases had no or only minor signs and symptoms, but 6% had moderate to severe poisoning. The severe poisonings, including one life-threatening were due to Lepiota brunneoincarnata and Amanita proxima ingestion. DISCUSSION: Possible explanations for this outbreak include favorable climate conditions and increased outdoor activities of the public in response to restrictions on other leisure activities imposed during the COVID-19 pandemic.


Assuntos
COVID-19 , Intoxicação Alimentar por Cogumelos , Amanita , Humanos , Israel/epidemiologia , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/epidemiologia , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Estações do Ano
18.
BMC Surg ; 21(1): 436, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34953488

RESUMO

BACKGROUND: Amanita verna is one of the most harmful wild fungi in China. Amanita verna poisoning occurs every year, and the mortality is as high as 50%. However, its clinical manifestations are complex and diverse. CASE PRESENTATION: In March 2019, three patients took a large amount of Amanita, and one of them received liver transplantation in Zhongshan hospital, Sun Yat-sen University. All patients had vomiting and diarrhea 8-12 h after eating wild mushrooms (Amanita). The patients were initially diagnosed with Amanita poisoning. One case (case 3) was complicated and diagnosed as mushroom poisoning (fatal Amanita), toxic hepatitis, acute liver failure, toxic encephalopathy, hemorrhagic colitis, toxic myocarditis, disseminated intravascular coagulation (DIC) and pregnancy. The general clinical data of all patients were recorded, who received early treatment such as hemodialysis, artificial liver plasma exchange, hormone shock and anti-infection. One case (case 1) recovered smoothly after liver transplantation, and the indexes of liver, kidney, coagulation function and infection were improved. The other two cases died of intracerebral hemorrhage. CONCLUSION: Liver transplantation is an effective method for the treatment of acute liver failure caused by mushroom poisoning and can improve the survival rate of patients with toxic liver failure.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Intoxicação Alimentar por Cogumelos , Amanita , Feminino , Humanos , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/cirurgia , Intoxicação Alimentar por Cogumelos/complicações , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Gravidez
19.
Genes (Basel) ; 12(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946858

RESUMO

Amanita exitialis is a poisonous mushroom and has caused many deaths in southern China. In this study, we collected 118 fruiting bodies of A. exitialis from seven different sites in Guangdong Province in southern China and investigated their genetic relationships using 14 polymorphic molecular markers. These 14 markers grouped the 118 fruiting bodies into 20 multilocus genotypes. Among these 20 genotypes, eight were each found only once while the remaining 12 were each represented by two to 54 fruiting bodies. Interestingly, among the 12 shared genotypes, four were shared between/among local populations that were separated by as far as over 80 km, a result consistent with secondary homothallic reproduction and long-distance spore dispersal. Despite the observed gene flow, significant genetic differentiations were found among the local populations, primarily due to the over-representation of certain genotypes within individual local populations. STRUCTURE analyses revealed that the 118 fruiting bodies belonged to three genetic clusters, consistent with divergence within this species in this geographic region. Interestingly, we found an excess of heterozygous individuals at both the local and the total sample level, suggesting potential inbreeding depression and heterozygous advantage in these populations of A. exitialis. We discuss the implications of our results for understanding the life cycle, dispersal, and evolution of this poisonous mushroom.


Assuntos
Amanita/crescimento & desenvolvimento , Estruturas Fúngicas/química , Genótipo , Filogenia , Reprodução , Amanita/genética , Amanita/metabolismo , China , Humanos , Análise de Sequência de DNA/métodos
20.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 39(10): 787-788, 2021 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-34727664

RESUMO

Mushroom poisoning with amatoxins can cause liver dysfunction in patients, and death in severe cases. The amatoxins detection by enzyme-linked immunosorbent assay (ELISA) can help early clinical diagnosis. Three patients were identified as α-amatoxin containing mushroom poisoning by ELISA. The first symptoms of patients was gastrointestinal symptoms, and liver function damage occured later. One patient gave up treatment and died. After received supportive treatments such as adsorption of toxins, catharsis, fluid supplementation to promote toxin metabolism and liver protection, 2 patients were recovered and discharged.


Assuntos
Amanita , Intoxicação Alimentar por Cogumelos , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Humanos , Intoxicação Alimentar por Cogumelos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...