Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.312
Filtrar
1.
Cell Rep Med ; 5(3): 101467, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38471503

RESUMO

Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.


Assuntos
Vacinas Virais , Animais , Chlorocebus aethiops , Linfócitos T , Formação de Anticorpos , Células Apresentadoras de Antígenos , Replicação Viral
2.
Sci Rep ; 14(1): 6262, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491084

RESUMO

CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining immune homeostasis in multiple sclerosis (MS). Hence, we aimed to explore the therapeutic efficacy and safety of adoptive cell therapy (ACT) utilizing induced antigen-specific Tregs in an animal model of MS, that is, in an experimental autoimmune encephalomyelitis (EAE) model. B cells from EAE model that were activated with soluble CD40L were used as antigen-presenting cells (APCs) to induce the differentiation of antigen-specific Tregs from naïve CD4 precursors, and then, a stepwise isolation of CD4+CD25highCD127low Tregs was performed using a flow sorter. All EAE mice were divided into Treg-treated group (2 × 104 cells in 0.2 mL per mouse, n = 14) and sham-treated group (0.2 mL normal saline (NS), n = 20), which were observed daily for clinical assessment, and for abnormal appearance for 6 weeks. Afterward, histological analysis, immunofluorescence and real-time PCR were performed. Compared to sham-treated mice, Treg-treated mice exhibited a significant decrease in disease severity scores and reduced inflammatory infiltration and demyelination in the spinal cord. Additionally, Tregs-treated mice demonstrated higher CCN3 protein and mRNA levels than sham-treated mice. The results of this preclinical study further support the therapeutic potential of this ACT approach in the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Linfócitos T Reguladores , Medula Espinal/patologia , Células Apresentadoras de Antígenos , Camundongos Endogâmicos C57BL
3.
Int J Pharm ; 654: 123959, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430949

RESUMO

DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.


Assuntos
COVID-19 , Nanopartículas , Vacinas de DNA , Humanos , Polietilenoimina/química , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Transfecção , DNA , Células Apresentadoras de Antígenos , Colesterol , Nanopartículas/química
4.
ACS Nano ; 18(12): 8571-8599, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483840

RESUMO

T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.


Assuntos
Células Apresentadoras de Antígenos , Ativação Linfocitária , Humanos , Imunoterapia/métodos , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva
5.
Sci Adv ; 10(13): eadk7955, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536926

RESUMO

Directly activating CD8+ T cells within the tumor through antigen-presenting cells (APCs) hold promise for tumor elimination. However, M2-like tumor-associated macrophages (TAMs), the most abundant APCs in tumors, hinder CD8+ T cell activation due to inefficient antigen cross-presentation. Here, we demonstrated a personalized nanotherapeutic platform using surgical tumor-derived galactose ligand-modified cancer cell membrane (CM)-coated cysteine protease inhibitor (E64)-loaded mesoporous silica nanoparticles for postsurgical cancer immunotherapy. The platform targeted M2-like TAMs and released E64 within lysosomes, which reshaped antigen cross-presentation and directly activated CD8+ T cells, thus suppressing B16-OVA melanoma growth. Furthermore, this platform, in combination with anti-PD-L1 antibodies, enhanced the therapeutic efficacy and substantially inhibited 4T1 tumor growth. CMs obtained from surgically resected tumors were used to construct a personalized nanotherapeutic platform, which, in synergy with immune checkpoint blockade (ICB), effectively inhibited postsurgical tumor recurrence in 4T1 tumor. Our work offered a robust, safe strategy for cancer immunotherapy and prevention of postsurgical tumor recurrence.


Assuntos
Melanoma Experimental , Macrófagos Associados a Tumor , Animais , Macrófagos Associados a Tumor/patologia , Linfócitos T CD8-Positivos , Recidiva Local de Neoplasia , Células Apresentadoras de Antígenos , Antígenos , Melanoma Experimental/patologia , Imunoterapia
6.
Bioessays ; 46(4): e2300230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412391

RESUMO

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Assuntos
Clatrina , Linfócitos T , Clatrina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Comunicação
7.
Immunol Invest ; 53(1): 10-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38348776

RESUMO

Extracellular vesicles (EVs) are membrane-bound structures released by cells and have become significant players in immune system functioning, primarily by facilitating cell-to-cell communication. Immune cells like neutrophils and dendritic cells release EVs containing bioactive molecules that modulate chemotaxis, activate immune cells, and induce inflammation. EVs also contribute to antigen presentation, lymphocyte activation, and immune tolerance. Moreover, EVs play pivotal roles in antimicrobial host defense. They deliver microbial antigens to antigen-presenting cells (APCs), triggering immune responses, or act as decoys to neutralize virulence factors and toxins. This review discusses host and microbial EVs' multifaceted roles in innate and adaptive immunity, highlighting their involvement in immune cell development, antigen presentation, and antimicrobial responses.


Assuntos
Anti-Infecciosos , Exossomos , Vesículas Extracelulares , Células Apresentadoras de Antígenos , Imunidade Adaptativa , Apresentação de Antígeno
8.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338667

RESUMO

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Assuntos
Lipossomos , Nanopartículas , Vacinas , Animais , Camundongos , RNA Mensageiro/química , Vacinas de mRNA , Transfecção , Células Apresentadoras de Antígenos , Nanopartículas/química
9.
Curr Protoc ; 4(2): e976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400601

RESUMO

Antigen-presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide-loaded major histocompatibility complexes (signal 1). This presentation, along with a co-stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient-derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen-specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Protein and particle modification for aAPC fabrication Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein Support Protocol 1: Quantification of aAPC stock concentration Basic Protocol 3: Determination of aAPC usage for murine CD8+ T cell activation Support Protocol 2: Isolation of murine CD8+ T cells.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Humanos , Animais , Camundongos , Células Apresentadoras de Antígenos/metabolismo , Ativação Linfocitária , Imunoterapia/métodos , Macrófagos
10.
Int Immunopharmacol ; 129: 111543, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301413

RESUMO

Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.


Assuntos
Melanoma , Humanos , Peptídeos/uso terapêutico , Células Apresentadoras de Antígenos , Imunoterapia/métodos
11.
Elife ; 122024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236633

RESUMO

Delineating the complex network of interactions between antigen-specific T cells and antigen presenting cells (APCs) is crucial for effective precision therapies against cancer, chronic infections, and autoimmunity. However, the existing arsenal for examining antigen-specific T cell interactions is restricted to a select few antigen-T cell receptor pairs, with limited in situ utility. This lack of versatility is largely due to the disruptive effects of reagents on the immune synapse, which hinder real-time monitoring of antigen-specific interactions. To address this limitation, we have developed a novel and versatile immune monitoring strategy by adding a short cysteine-rich tag to antigenic peptides that emits fluorescence upon binding to thiol-reactive biarsenical hairpin compounds. Our findings demonstrate the specificity and durability of the novel antigen-targeting probes during dynamic immune monitoring in vitro and in vivo. This strategy opens new avenues for biological validation of T-cell receptors with newly identified epitopes by revealing the behavior of previously unrecognized antigen-receptor pairs, expanding our understanding of T cell responses.


Assuntos
Células Apresentadoras de Antígenos , Autoimunidade , Epitopos , Comunicação Celular , Cisteína
13.
Biomolecules ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254689

RESUMO

Oral tolerance has been defined as the specific suppression of immune responses to an antigen by prior oral administration of the antigen. It has been thought to serve to suppress food allergy. Previous studies have shown that dendritic cells (DCs) and regulatory T cells (Tregs) are involved in the induction of oral tolerance. However, the detailed mechanisms of Treg induction in oral tolerance remain largely unknown. Eosinophils have been recognized as effector cells in allergic diseases, but in recent years, the diverse functions of tissue-resident eosinophils have been reported. Eosinophils in the intestine have been reported to induce Tregs by releasing TGF-ß, but the role of eosinophils in oral tolerance is still controversial. In this study, we analyzed the roles of eosinophils in oral tolerance using eosinophil-deficient ΔdblGATA mice (mice lacking a high-affinity GATA-binding site in the GATA1 promoter). ΔdblGATA mice showed impaired antigen-induced oral tolerance compared to wild-type mice. The induction of RORγt+ Tregs in mesenteric lymph nodes (MLNs) by oral tolerance induction was impaired in ΔdblGATA mice compared to wild-type mice. An increase in RORγt+ antigen-presenting cells (APCs), which are involved in RORγt+ Treg differentiation, in the intestine and MLNs was not seen in ΔdblGATA mice. Notably, the expansion of group 3 innate lymphoid cells (ILC3s), a subset of RORγt+ APCs, by oral tolerance induction was seen in wild-type mice but not ΔdblGATA mice. These results suggest that eosinophils are crucial in the induction of oral tolerance, possibly via the induction of RORγt+ APCs and RORγt+ Tregs.


Assuntos
Eosinófilos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos T Reguladores , Imunidade Inata , Linfócitos , Células Apresentadoras de Antígenos
14.
J Immunol Res ; 2024: 2313062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268531

RESUMO

Superantigens are virulence factors secreted by microorganisms that can cause various immune diseases, such as overactivating the immune system, resulting in cytokine storms, rheumatoid arthritis, and multiple sclerosis. Some studies have demonstrated that superantigens do not require intracellular processing and instated bind as intact proteins to the antigen-binding groove of major histocompatibility complex II on antigen-presenting cells, resulting in the activation of T cells with different T-cell receptor Vß and subsequent overstimulation. To combat superantigen-mediated diseases, researchers have employed different approaches, such as antibodies and simulated peptides. However, due to the complex nature of superantigens, these approaches have not been entirely successful in achieving optimal therapeutic outcomes. CD28 interacts with members of the B7 molecule family to activate T cells. Its mimicking peptide has been suggested as a potential candidate to block superantigens, but it can lead to reduced T-cell activity while increasing the host's infection risk. Thus, this review focuses on the use of drug delivery methods to accurately target and block superantigens, while reducing the adverse effects associated with CD28 mimic peptides. We believe that this method has the potential to provide an effective and safe therapeutic strategy for superantigen-mediated diseases.


Assuntos
Anticorpos , Antígenos CD28 , Células Apresentadoras de Antígenos , Peptídeos , Superantígenos
16.
Sci Rep ; 14(1): 787, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191799

RESUMO

The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.


Assuntos
Fibrinogênio , Melanoma , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Células Apresentadoras de Antígenos , Carcinoma Epitelial do Ovário , Melanoma/genética , Melanoma/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Microambiente Tumoral
17.
Commun Biol ; 7(1): 32, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182876

RESUMO

Preeclampsia is a multifactorial and heterogeneous complication of pregnancy. Here, we utilize single-cell RNA sequencing to dissect the involvement of circulating immune cells in preeclampsia. Our findings reveal downregulation of immune response in lymphocyte subsets in preeclampsia, such as reduction in natural killer cells and cytotoxic genes expression, and expansion of regulatory T cells. But the activation of naïve T cell and monocyte subsets, as well as increased MHC-II-mediated pathway in antigen-presenting cells were still observed in preeclampsia. Notably, we identified key monocyte subsets in preeclampsia, with significantly increased expression of angiogenesis pathways and pro-inflammatory S100 family genes in VCAN+ monocytes and IFN+ non-classical monocytes. Furthermore, four cell-type-specific machine-learning models have been developed to identify potential diagnostic indicators of preeclampsia. Collectively, our study demonstrates transcriptomic alternations of circulating immune cells and identifies immune components that could be involved in pathophysiology of preeclampsia.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Células Apresentadoras de Antígenos , Aprendizado de Máquina , Transcriptoma , Análise de Sequência de RNA
18.
Clin Cancer Res ; 30(1): 9-11, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37870487

RESUMO

In this CCR Translations, we discuss the therapeutic potential of CD40 agonism, which stimulates antigen-presenting cells (APC) to activate effector T and NK cells. CD40 agonism may lead to development of an interferon-activated, T cell-inflamed tumor microenvironment and has the potential to facilitate long-term response with immune checkpoint blockade. See related article by Weiss et al., p. 74.


Assuntos
Antígenos CD40 , Inibidores de Checkpoint Imunológico , Humanos , Ativação Linfocitária , Células Apresentadoras de Antígenos
19.
Acta Biomater ; 174: 386-399, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016511

RESUMO

Immune cells distinguish cancer cells mainly relying on their membrane-membrane communication. The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. We exploit cancer cell membranes as the whole cancer antigen repertoire and reinforce its immunogenicity by cellular engineering to modulate the cytomembrane's immune-associated functions. This study reports a vaccine platform based on radiation-engineered cancer cells, of which the membrane HSP70 protein as the immune chaperon/traitor is endogenously upregulated. The resulting positive influences are shown to cover immunogenic steps occurring in antigen-presenting cells, including the uptake and the cross-presentation of the cancer antigens, thus amplifying cancer-specific immunogenicity. Membrane vaccines offer chances to introduce desired metal ions through membrane-metal complexation. Using Mn2+ ion as the costimulatory interferon genes agonist, immune activity is enhanced to further boost adaptive cancer immunogenicity. Results have evidenced that this artificially engineered membrane vaccine with favorable bio-safety could considerably reduce tumorigenicity and inhibit tumor growth. This study provides a universally applicable and facilely available cancer vaccine platform by artificial engineering of cancer cells to inherit and amplify the natural merits of cancer cell membranes. STATEMENT OF SIGNIFICANCE: The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. Cancer cell membrane presents superior advantages as the whole cancer antigen repertoire, including the reported and the unidentified antigens, but its immunogenicity is far from satisfactory. Cellular engineering approaches offer chances to endogenously modulate the immune-associated functions of cell membranes. Such a reinforced vaccine based on the engineered cancer cell membranes matches better the natural immune recognition pathway than the conventional vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/prevenção & controle , Células Apresentadoras de Antígenos , Antígenos de Neoplasias , Membrana Celular
20.
Nat Rev Immunol ; 24(1): 64-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37479834

RESUMO

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.


Assuntos
Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Imunidade Inata , Células Endoteliais , Células Apresentadoras de Antígenos/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...