Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.257
Filtrar
1.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951577

RESUMO

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Assuntos
Química Click , Camundongos Endogâmicos C57BL , Rickettsia , Animais , Rickettsia/genética , Rickettsia/fisiologia , Camundongos , Química Click/métodos , Estômago/microbiologia , Modelos Animais de Doenças , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Feminino , Infecções por Rickettsia/microbiologia , Azidas/química
2.
Methods Mol Biol ; 2816: 129-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977594

RESUMO

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Assuntos
Álcoois , Química Click , Fosfolipase D , Fosfolipase D/metabolismo , Fosfolipase D/química , Química Click/métodos , Álcoois/química , Álcoois/metabolismo , Reação de Cicloadição , Humanos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/química , Azidas/química , Imagem Molecular/métodos , Alcinos/química
3.
ACS Appl Mater Interfaces ; 16(28): 35874-35886, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954798

RESUMO

To effectively solve the problem of significant loss of transplanted cells caused by thrombosis during cell transplantation, this study simulates the human fibrinolytic system and combines metabolic oligosaccharide engineering with strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry to construct a cell surface with fibrinolytic activity. First, a copolymer (POL) of oligoethylene glycol methacrylate (OEGMA) and 6-amino-2-(2-methylamido)hexanoic acid (Lys) was synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization, and the dibenzocyclooctyne (DBCO) functional group was introduced into the side chain of the copolymer through an active ester reaction, resulting in a functionalized copolymer DBCO-PEG4-POL with ε-lysine ligands. Then, azide functional groups were introduced onto the surface of HeLa model cells through metabolic oligosaccharide engineering, and DBCO-PEG4-POL was further specifically modified onto the surface of HeLa cells via the SPAAC "click" reaction. In vitro investigations revealed that compared with unmodified HeLa cells, modified cells not only resist the adsorption of nonspecific proteins such as fibrinogen and human serum albumin but also selectively bind to plasminogen in plasma while maintaining good cell viability and proliferative activity. More importantly, upon the activation of adsorbed plasminogen into plasmin, the modified cells exhibited remarkable fibrinolytic activity and were capable of promptly dissolving the primary thrombus formed on their surfaces. This research not only provides a novel approach for constructing transplantable cells with fibrinolytic activity but also offers a new perspective for effectively addressing the significant loss of transplanted cells caused by thrombosis.


Assuntos
Química Click , Reação de Cicloadição , Fibrinólise , Oligossacarídeos , Humanos , Células HeLa , Oligossacarídeos/química , Fibrinólise/efeitos dos fármacos , Engenharia Metabólica , Azidas/química , Polietilenoglicóis/química , Metacrilatos/química , Alcinos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Plasminogênio/química , Plasminogênio/metabolismo , Propriedades de Superfície
4.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892344

RESUMO

SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.


Assuntos
Azidas , COVID-19 , Nasofaringe , Propídio , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Azidas/química , Propídio/análogos & derivados , Propídio/química , COVID-19/virologia , Carga Viral/métodos , Nasofaringe/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase/métodos
5.
Biomed Mater ; 19(4)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38901421

RESUMO

Nowadays, medical polyurethanes with favorable and durable antibacterial properties received more attention, because of avoiding repeated replacement of interventional materials and reducing patients' pain. In this thesis, non-soluble antibacterial polyurethane (NAPU) based on cation antibacterial mechanism was prepared by photo-grafting chitosan azide and heparin azide into polyurethane (PU). -NH3+of chitosan azide absorbed bacteria, inhibiting and breaking their mobility and structures. Heparin azide prevented cations from penetrating bacteria's membranes and inhibited their growth. The results showed that chitosan azide and heparin azide were successfully grafted into PU. The highest antibacterial rate was 92.07%, cytotoxicity grade ranging from 0-1 (RGR standard) and water contact angle exhibiting 60°, attributing to cation antibacterial effect and -OH existing. Tensile strength was up to 23.91 MPa and was suitable for using as medical materials. NAPU with long-lasting coating both possessed antibacterial properties and persistence, which can solve the problem of medical catheters' long-term using.


Assuntos
Antibacterianos , Azidas , Cátions , Quitosana , Heparina , Poliuretanos , Poliuretanos/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Heparina/química , Azidas/química , Teste de Materiais , Resistência à Tração , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Solubilidade
6.
Org Lett ; 26(24): 5215-5219, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861677

RESUMO

Bacterial nonulosonic acids (NulOs), which feature a nine-carbon backbone, are associated with the biological functions of bacterial glycans. Here, an orthogonally protected 5-amino-7-azido-3,5,7,9-tetradeoxy-d-glycero-l-gluco-2-nonulosonic acid related to Fusobacterium nucleatum ATCC 23726 NulO was synthesized from N-acetylneuraminic acid with sequential performance of C5,7 azidation, C9 deoxygenation, C4 epimerization, and N5,7 differentiation. The C5 azido group in the obtained 5,7-diazido-NulO can be regioselectively reduced to differentiate the two amino groups.


Assuntos
Ácido N-Acetilneuramínico , Açúcares Ácidos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/síntese química , Estrutura Molecular , Açúcares Ácidos/química , Açúcares Ácidos/síntese química , Fusobacterium nucleatum/química , Azidas/química
7.
J Am Chem Soc ; 146(25): 17250-17260, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38871677

RESUMO

Nanotechnology has revolutionized the fabrication of hybrid species with tailored functionalities. A milestone in this field is the deoxyribonucleic acid (DNA) conjugation of nanoparticles, introduced almost 30 years ago, which typically exploits the affinity between thiol groups and metallic surfaces. Over the last decades, developments in colloidal research have enabled the synthesis of an assortment of nonmetallic structures, such as high-index dielectric nanoparticles, with unique properties not previously accessible with traditional metallic nanoparticles. However, to stabilize, integrate, and provide further functionality to nonmetallic nanoparticles, reliable techniques for their functionalization with DNA will be crucial. Here, we combine well-established dibenzylcyclooctyne-azide click-chemistry with a simple freeze-thaw method to achieve the functionalization of silica and silicon nanoparticles, which form exceptionally stable colloids with a high DNA surface density of ∼0.2 molecules/nm2. Furthermore, we demonstrate that these functionalized colloids can be self-assembled into high-index dielectric dimers with a yield of over 50% via the use of DNA origami. Finally, we extend this method to functionalize other important nanomaterials, including oxides, polymers, core-shell, and metal nanostructures. Our results indicate that the method presented herein serves as a crucial complement to conventional thiol functionalization chemistry and thus greatly expands the toolbox of DNA-functionalized nanoparticles currently available.


Assuntos
Química Click , DNA , Nanopartículas , Dióxido de Silício , DNA/química , Nanopartículas/química , Dióxido de Silício/química , Silício/química , Azidas/química , Propriedades de Superfície
8.
Future Med Chem ; 16(11): 1109-1125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916564

RESUMO

Aim: The goal of this study is to synthesize new metal complexes containing N-methyl-1-(pyridin-2-yl)methanimine and azide ligands as α-glucosidase inhibitors for Type 2 diabetes. Materials & methods: The target complexes (12-16) were synthesized by reacting N-methyl-1-(pyridin-2-yl)methanimine (L1) with sodium azide in the presence of corresponding metal salts. The investigation of target protein interactions, vibrational, electronic and nonlinear optical properties for these complexes was performed by molecular docking and density functional theory studies. Results: Among these complexes, complex 13 (IC50 = 0.2802 ± 0.62 µM) containing Hg ion showed the highest α-glucosidase inhibitory property. On the other hand, significant results were detected for complexes containing Cu and Ag ions. Conclusion: Complex 13 may be an alternate anti-diabetic inhibitor according to in vitro/docking results.


[Box: see text].


Assuntos
Azidas , Complexos de Coordenação , Teoria da Densidade Funcional , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Azidas/química , Humanos , Estrutura Molecular , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 109: 129841, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838920

RESUMO

Protein phosphorylation is catalyzed by kinases to regulate cellular events and disease states. Identifying kinase-substrate relationships represents a powerful strategy to understand cell biology and disease yet remains challenging due to the rapid dynamics of phosphorylation. Over the last decade, several γ-phosphoryl modified ATP analogs containing crosslinkers were developed to covalently conjugate kinases, their substrates, and their associated proteins for subsequent characterization. Here, kinetics and crosslinking experiments demonstrated that the UV-activated analogs, ATP-aryl azide and ATP-benzophenone, offered the most robust crosslinking, whereas electrophilic ATP-aryl fluorosulfate promoted the most effective proximity-enabled crosslinking. The data will guide future applications of kinase-catalyzed crosslinking to study normal and disease biology.


Assuntos
Trifosfato de Adenosina , Reagentes de Ligações Cruzadas , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química , Benzofenonas/química , Benzofenonas/síntese química , Estrutura Molecular , Azidas/química , Humanos , Cinética , Fosforilação
10.
Int J Pharm ; 660: 124332, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866085

RESUMO

Surface functionalization of nano drug carriers allows for precise delivery of therapeutic molecules to the target site. This technique involves attaching targeting molecules to the nanoparticle surface, facilitating selective interaction. In this study, we engineered virus-like particles (VLPs) to enhance their targeting capabilities. Azide groups incorporated on the lipid membranes of VLPs enabled bioorthogonal click reactions for conjugation with cycloalkyne-bearing molecules, providing efficient conjugation with high specificity. HIV-1 Gag VLPs were chosen due to their envelope, which allows host membrane component incorporation, and the Gag protein, which serves as a recognition motif for human T cells. This combination, along with antibody-mediated targeting, addresses the limitations of intracellular delivery to T cells, which typically exhibit low uptake of exogenous materials. The selective uptake of azide VLPs by CD3-positive T cells was evaluated in a co-culture system. Even without antibody conjugation, VLP uptake was enhanced in T cells, indicating their intrinsic targeting potential. Antibody conjugation further amplified this effect, demonstrating the synergistic benefits of the combined targeting approach. Our study shows that recombinant production of azide functionalized VLPs results in engineered nanoparticles that can be easily modified using bioorthogonal click reactions, providing high specificity and versatility for conjugation with various molecules, making it applicable to a wide range of biological products.


Assuntos
Azidas , Química Click , Linfócitos T , Humanos , Azidas/química , Linfócitos T/imunologia , Nanopartículas/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1 , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
11.
Bioorg Chem ; 150: 107557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878754

RESUMO

The limitations of commonly used sodium ascorbate-based catalyst system for copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction include excess production of reactive oxygen species and rapid catalyst deactivation. In this study instead of using a highly active reducing agent, such as, sodium ascorbate, we chose reducing sugar as a mild reducing agent to build up the catalyst system for CuAAC reaction. Interestingly, the bicinchoninic acid (BCA) assay system containing reducing sugar satisfies the essential elements of the catalyst system for CuAAC reaction. We found that CuSO4/BCA/Reducing sugar system can catalyze the CuAAC reaction but with low yield. Rational analyses of various parameters in CuSO4/BCA/Glucose catalyst system suggested storage at room temperature might enhance the catalytic activity, which was proven to be the case. Importantly, the system remains stable at room temperature and minimal H2O2 was detected. Notably, our study showed that the coordination between the slow reduction of Cu(I) by reducing sugar and the selective chelation of Cu(I) by BCA is key to developing this system. The CuSO4/BCA/Reducing sugar catalyst system was successfully applied to various CuAAC reaction based bioanalyses, and it is suitable for the CuAAC reaction based bioanalyses that are sensitive to ROS or request long reaction time.


Assuntos
Alcinos , Azidas , Sulfato de Cobre , Cobre , Reação de Cicloadição , Catálise , Cobre/química , Azidas/química , Alcinos/química , Sulfato de Cobre/química , Estrutura Molecular , Espécies Reativas de Oxigênio/química , Quinolinas
12.
Anal Chem ; 96(24): 10028-10037, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38853671

RESUMO

Nucleic acids play a pivotal role in the diagnosis of diseases. However, rapid, cost-efficient, and ultrasensitive identification of nucleic acid targets still represents a significant challenge. Herein, we describe an enzyme-free DNA amplification method capable of achieving accurate and ultrasensitive nucleic acid detection via DNA-templated click ligation chain reaction (DT-CLCR) catalyzed by a heterogeneous nanocatalyst made of Cu2O (hnCu2O). This hnCu2O-DT-CLCR method is built on two cross-amplifying hnCu2O-catalyzed DNA-templated azide-alkyne cycloaddition-driven DNA ligation reactions that boast a fast reaction rate and a high DNA ligation yield in minutes, enabling rapid exponential amplification of specific DNA targets. This newly developed hnCu2O-DT-CLCR-enabled DNA amplification strategy is further integrated with two signal reporting mechanisms to achieve low-cost and easy-to-use biosensors: an electrochemical sensor through the conjugation of a methylene blue redox reporter to a DNA probe used in hnCu2O-DT-CLCR and a colorimetric sensor through the incorporation of the split-to-intact G-quadruplex DNAzyme encoded into hnCu2O-DT-CLCR. Both sensors are able to achieve specific detection of the intended DNA target with a limit of detection at aM ranges, even when challenged in complex biological matrices. The combined hnCu2O-DT-CLCR and sensing strategies offer attractive universal platforms for enzyme-free and yet efficient detection of specific nucleic acid targets.


Assuntos
Química Click , Cobre , DNA , Técnicas de Amplificação de Ácido Nucleico , Cobre/química , DNA/química , Catálise , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção , DNA Catalítico/química , DNA Catalítico/metabolismo , Azidas/química , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Reação de Cicloadição
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692110

RESUMO

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Assuntos
Polímeros Molecularmente Impressos , Ureia , Uretana , Vinho , Uretana/análise , Uretana/química , Polímeros Molecularmente Impressos/química , Ureia/análise , Ureia/química , Vinho/análise , Espectrometria de Fluorescência/métodos , Azidas/química , Limite de Detecção , Adsorção , Estruturas Metalorgânicas/química , Impressão Molecular/métodos
14.
Bioorg Chem ; 149: 107464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810483

RESUMO

While cross-linked hemoglobin tetramers are functional acellular oxygen carriers, their ability to scavenge endogenous nitric oxide (NO) by endothelial pore penetration results in adverse cardiovascular effects. Animal studies established that cross-linked human hemoglobins, chemically joined into a double protein, avoid NO scavenging, presumably due to their larger size preventing penetration into endothelial regions that produce NO. In the present report, we utilize azide-containing acyl phosphate reagents to form cross-linked hemoglobins then bio-orthogonally click-couple them with a bis-alkyne (CuAAC). The production of these larger oxygen-carrying hemoglobin conjugates is obtained in high yields through subunit-specific cross-linking between each ßLys82 ε-amino group. The methyl phosphate leaving groups provide electrostatically induced ß-subunit site-selectivity, producing azido-cross-linked hemoglobin that undergoes highly efficient CuAAC compared with previous cross-linkers. The acyl phosphates also efficiently cross-link both T-state and R-state hemoglobin. The resulting bis- and tris-tetrameric hemoglobin conjugates exhibit oxygen affinity and cooperativity that are comparable to those of the native protein. The hemoglobin derivatives from the process we describe can function as sources of oxygen in biomedical applications, such as in ex-vivo donor organ perfusion.


Assuntos
Alcinos , Azidas , Reagentes de Ligações Cruzadas , Hemoglobinas , Oxigênio , Alcinos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Azidas/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química , Humanos , Oxigênio/química , Estrutura Molecular , Química Click , Cobre/química
15.
Eur J Pharm Sci ; 199: 106813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797442

RESUMO

Novel BODIPY-estradiol conjugates have been synthesized by selecting position C-3-O for labeling. The conjugation strategy was based on Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or etherification. Estradiol derivatives used as azide partners bearing an ω-azidoalkyl function through C4-C8-long linkers have been prepared. CuAAC reactions of estradiol azides with BODIPY alkyne furnished fluorescent 3-O-labeled conjugates bearing the triazole ring as a coupling moiety. Williamson etherifications of 3-O-(ω-bromoalkyl)-17ß-estradiol derivatives with BODIPY-OH resulted in labeled conjugates connected with an ether moiety. Interactions of the conjugates with estrogen receptor (ER) were investigated using molecular docking calculations in comparison with estradiol. The conjugates occupied both the classical and alternative binding sites on human ERα, with slightly lower binding affinity to references estradiol and diethystilbestrol. All compounds have displayed reasonable estrogenic activity. They increased the proliferation of ER-positive breast cancer cell line MCF7 contrary to ER-negative SKBR-3 cell line. The most potent compound 13a induced the transcriptional activity of ER in dose-dependent manner in dual luciferase recombinant reporter model and increased progesterone receptor's expression, proving the retained estrogenic activity. The fluorescence of candidate compound 13a co-localised with the ERα. The newly synthesized labeled compounds might serve as good starting point for further development of fluorescent probes for modern biological applications. In addition to studying steroid uptake and transport in cells, e.g. in the processes of biodegradation of estrogen-hormones micropollutants, they could also be utilized in examination of estrogen-binding proteins.


Assuntos
Compostos de Boro , Estradiol , Receptor alfa de Estrogênio , Simulação de Acoplamento Molecular , Compostos de Boro/química , Humanos , Estradiol/química , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Linhagem Celular Tumoral , Estrogênios/química , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Azidas/química , Corantes Fluorescentes/química
16.
Chem Commun (Camb) ; 60(49): 6256-6259, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38768325

RESUMO

Dendritic DNA molecules, referred to as DNA dendrons, consist of multiple covalently linked strands and are expected to improve the cellular uptake and potency of therapeutic oligonucleotides because of their multivalency. In this study, we developed an efficient synthetic method for producing DNA dendrons using strain-promoted azide-alkyne cycloaddition. Integration of the antitumor aptamer AS1411 into DNA dendrons enhanced cellular uptake and antiproliferative activity in cancer cells. These findings demonstrate that the incorporation of multivalent aptamers into DNA dendrons can effectively boost their therapeutic effects.


Assuntos
Aptâmeros de Nucleotídeos , Proliferação de Células , Dendrímeros , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Humanos , Dendrímeros/química , Dendrímeros/farmacologia , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Azidas/química , Alcinos/química , Alcinos/farmacologia , Reação de Cicloadição , Linhagem Celular Tumoral , Oligodesoxirribonucleotídeos
17.
Angew Chem Int Ed Engl ; 63(29): e202402318, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710653

RESUMO

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.


Assuntos
Química Click , Rodopseudomonas , Shewanella , Transporte de Elétrons , Shewanella/metabolismo , Shewanella/química , Rodopseudomonas/metabolismo , Rodopseudomonas/química , Azidas/química , Azidas/metabolismo , Alcinos/química
18.
Food Chem ; 452: 139527, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703741

RESUMO

Tryptamine is a biogenic amine that affects organoleptic quality through the generation of off-odours in foods. Herein, imine-based covalent organic frameworks (COFs) were synthesized via Schiff base reactions and postmodified with click chemistry to generate azide-functionalized COFs with tunable azide units on the walls. The combination of molecular imprinting with COFs enabled the specific recognition of the targets. The resulting optosensing system (azide-functionalized COFs@MIPs) was used as a sample-to-answer analyser for detecting tryptamine (detection time within 10 min). A linear relationship was observed for the fluorescence response to tryptamine concentrations in the range of 3-120 µg L-1, with a limit of detection of 1.74 µg L-1. The recoveries for spiked samples were satisfactory, with relative standard deviations <9.90%. The optosensing system is a potential tool for the quantitative detection of tryptamine in meat products because of its lower cost, shorter processing time, and simpler processing steps compared to conventional chromatographic techniques.


Assuntos
Azidas , Contaminação de Alimentos , Produtos da Carne , Polímeros Molecularmente Impressos , Triptaminas , Triptaminas/análise , Triptaminas/química , Azidas/química , Produtos da Carne/análise , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos/química , Animais , Estruturas Metalorgânicas/química , Limite de Detecção
19.
Bioorg Med Chem Lett ; 108: 129815, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795737

RESUMO

We report the use of trimethylsilyl azide and Selectfluor to implement a standard protocol targeted at the prenylated nucleic acid known as i6A-RNA. After optimizing the conditions, we applied this method to regulate a wide range of i6A-RNA species using synthetic imidazole-based probes (I-IV). We observed that prenylated nucleic acid plays a crucial role in the cell hemostasis in A549 cell lines.


Assuntos
Azidas , Química Click , Halogenação , Imidazóis , Humanos , Imidazóis/química , Imidazóis/síntese química , Azidas/química , Células A549 , RNA/química , RNA/metabolismo , Estrutura Molecular , Estabilidade de RNA/efeitos dos fármacos
20.
Anal Chem ; 96(23): 9576-9584, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808923

RESUMO

GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.


Assuntos
DNA , Hibridização de Ácido Nucleico , Humanos , DNA/química , Proteínas Ligadas por GPI/metabolismo , Animais , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Corantes Fluorescentes/química , Azidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA