Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179.301
Filtrar
2.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954836

RESUMO

MOTIVATION: Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS: To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION: The web is available at {{https://www.ai-bt.com}}.


Assuntos
Primers do DNA , Mineração de Dados , Mineração de Dados/métodos , Software , Bactérias/genética , Bactérias/classificação
3.
Ecotoxicol Environ Saf ; 281: 116632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959791

RESUMO

University students predominantly spend their time indoors, where prolonged exposure raises the risk of contact with microorganisms of concern. However, our knowledge about the microbial community characteristics on university campus and their underpinnings is limited. To address it, we characterized bacterial communities from the surfaces of various built environments typical of a university campus, including cafeterias, classrooms, dormitories, offices, meeting rooms, and restrooms, in addition to human skin. The classrooms harbored the highest α-diversity, while the cafeterias had the lowest α-diversity. The bacterial community composition varied significantly across different building types. Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria were common phyla in university buildings, accounting for more than 90 % of total abundance. Staphylococcus aureus was the most abundant potential pathogen in classrooms, dormitories, offices, restrooms, and on human skin, indicating a potential risk for skin disease infections in these buildings. We further developed a new quantitative pathogenic risk assessment method according to the threat of pathogens to humans and found that classrooms exhibited the highest potential risk. The fast expectation-maximization algorithm identified 59 %-86 % of bacterial sources in buildings, with the human skin as the largest bacterial source for most buildings. As the sources of bacteria were highly traceable, we showed that homogeneous selection, dispersal limitation, and ecological drift were major ecological forces that drove community assembly. Our findings have important implications for predicting the distribution and sources of indoor dust bacterial communities on university campus.


Assuntos
Bactérias , Universidades , Humanos , Bactérias/isolamento & purificação , Bactérias/classificação , Staphylococcus aureus , Pele/microbiologia , Microbiota , Monitoramento Ambiental , Medição de Risco
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000059

RESUMO

There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 µg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.


Assuntos
Anticonvulsivantes , Carbamazepina , Microbioma Gastrointestinal , Larva , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Carbamazepina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos
5.
Methods Mol Biol ; 2836: 19-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995533

RESUMO

Genome annotation has historically ignored small open reading frames (smORFs), which encode a class of proteins shorter than 100 amino acids, collectively referred to as microproteins. This cutoff was established to avoid thousands of false positives due to limitations of pure genomics pipelines. Proteogenomics, a computational approach that combines genomics, transcriptomics, and proteomics, makes it possible to accurately identify these short sequences by overlaying different levels of omics evidence. In this chapter, we showcase the use of µProteInS, a bioinformatics pipeline developed for the identification of unannotated microproteins encoded by smORFs in bacteria. The workflow covers all the steps from quality control and transcriptome assembly to the scoring and post-processing of mass spectrometry data. Additionally, we provide an example on how to apply the pipeline's machine learning method to identify high-confidence spectra and pinpoint the most reliable identifications from large datasets.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Fases de Leitura Aberta , Proteogenômica , Fluxo de Trabalho , Fases de Leitura Aberta/genética , Proteogenômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Proteômica/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Software , Espectrometria de Massas/métodos , Micropeptídeos
6.
Methods Mol Biol ; 2836: 111-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995539

RESUMO

Peptidoglycan is a major and essential component of the bacterial cell envelope that confers cell shape and provides protection against internal osmotic pressure. This complex macromolecule is made of glycan strands cross-linked by short peptides, and its structure is continually modified throughout growth via a process referred to as "remodeling." Peptidoglycan remodeling allows cells to grow, adapt to their environment, and release fragments that can act as signaling molecules during host-pathogen interactions. Preparing peptidoglycan samples for structural analysis first requires purification of the peptidoglycan sacculus, followed by its enzymatic digestion into disaccharide peptides (muropeptides). These muropeptides can then be characterized by liquid chromatography coupled mass spectrometry (LC-MS) and used to infer the structure of intact peptidoglycan sacculi. Due to the presence of unusual crosslinks, noncanonical amino acids, and amino sugars, the analysis of peptidoglycan LC-MS datasets cannot be handled by traditional proteomics software. In this chapter, we describe a protocol to perform the analysis of peptidoglycan LC-MS datasets using the open-source software PGFinder. We provide a step-by-step strategy to deconvolute data from various mass spectrometry instruments, generate muropeptide databases, perform a PGFinder search, and process the data output.


Assuntos
Peptidoglicano , Software , Peptidoglicano/química , Peptidoglicano/metabolismo , Peptidoglicano/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Glicômica/métodos , Proteômica/métodos , Bactérias/metabolismo , Bactérias/química , Espectrometria de Massa com Cromatografia Líquida
7.
Curr Microbiol ; 81(9): 269, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003672

RESUMO

The escalation of antimicrobial resistance (AMR) due to the excessive and inappropriate use of antimicrobials has prompted the urgent need for more rapid and effective antimicrobial susceptibility testing (AST) methods. Conventional AST techniques often take 16-24 h, leading to empirical prescription practices and the potential emergence of AMR. The study aimed to develop a rapid disk diffusion (RDD) method utilizing laser speckle formation (LSF) technology to expedite AST results. The study aimed to evaluate the performance of LSF technology in determining antimicrobial susceptibility. In this study, preclinical and clinical settings were established to compare the LSF technology with conventional disk diffusion (DD) methods to measure the inhibition zones. Preclinical experiments with different bacterial strains demonstrated more than 70% categorical agreement (CA) against most antimicrobials. Further, clinical experiments with multiple strains and antibiotics revealed CA ranging from 40 to 79%, while major and minor discrepancies were observed around 30% and 11%, respectively. These observations revealed high concordance between RDD and DD for multiple antimicrobials in multiple species. The results underscore the potential of RDD-based LSF technology for hastening AST procedures. The current study is marked by a unique equipment setup and analysis approach. Collectively, the suggested laser-based RDD showed greater potential than previously developed comparable methods. The proposed method and design have a higher application potential than formerly developed similar technologies. Together, the study contributes to the ongoing development of rapid AST methods.


Assuntos
Antibacterianos , Bactérias , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Lasers , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/métodos , Humanos , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos
9.
Nat Commun ; 15(1): 5920, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004662

RESUMO

Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.


Assuntos
Metagenômica , Microbiota , Pergelissolo , RNA Ribossômico 16S , Microbiologia do Solo , Pergelissolo/microbiologia , Tibet , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Solo/química , Metagenoma , Ecossistema , Mudança Climática , Biodiversidade , Filogenia
10.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004720

RESUMO

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Assuntos
Astrágalo , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Astrágalo/microbiologia , Astrágalo/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , Saponinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metabolômica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
11.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38955392

RESUMO

Guaymas Basin, located in the Gulf of California, is a hydrothermally active marginal basin. Due to steep geothermal gradients and localized heating by sill intrusions, microbial substrates like short-chain fatty acids and hydrocarbons are abiotically produced from sedimentary organic matter at comparatively shallow depths. We analyzed the effect of hydrocarbons on uptake of hydrocarbons by microorganisms via nano-scale secondary ion mass spectrometry (NanoSIMS) and microbial sulfate reduction rates (SRR), using samples from two drill sites sampled by IODP Expedition 385 (U1545C and U1546D). These sites are in close proximity of each other (ca. 1 km) and have very similar sedimentology. Site U1546D experienced the intrusion of a sill that has since then thermally equilibrated with the surrounding sediment. Both sites currently have an identical geothermal gradient, despite their different thermal history. The localized heating by the sill led to thermal cracking of sedimentary organic matter and formation of potentially bioavailable organic substrates. There were low levels of hydrocarbon and nitrogen uptake in some samples from both sites, mostly in surficial samples. Hydrocarbon and methane additions stimulated SRR in near-seafloor samples from Site U1545C, while samples from Site U1546D reacted positively only on methane. Our data indicate the potential of microorganisms to metabolize hydrocarbons even in the deep subsurface of Guaymas Basin.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Sulfatos/metabolismo , Metano/metabolismo , Espectrometria de Massa de Íon Secundário , Água do Mar/microbiologia , Nitrogênio/metabolismo
12.
PLoS One ; 19(7): e0301558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985711

RESUMO

Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 µg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.


Assuntos
Antibacterianos , Mentha , Testes de Sensibilidade Microbiana , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Antibacterianos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Destilação/métodos , Bactérias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia com Fluido Supercrítico/métodos , Óleos de Plantas/farmacologia , Óleos de Plantas/química
13.
PLoS One ; 19(7): e0306722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985706

RESUMO

Host microbial communities (hereafter, the 'microbiome') are recognized as an important aspect of host health and are gaining attention as a useful biomarker to understand the ecology and demographics of wildlife populations. Several studies indicate that the microbiome may contribute to the adaptive capacity of animals to changing environments associated with increasing habitat fragmentation and rapid climate change. To this end, we investigated the gut microbiome of pronghorn (Antilocapra americana), an iconic species in an environment that is undergoing both climatic and anthropogenic change. The bacterial composition of the pronghorn gut microbiome has yet to be described in the literature, and thus our study provides important baseline information about this species. We used 16S rRNA amplicon sequencing of fecal samples to characterize the gut microbiome of pronghorn-a facultative sagebrush (Artemisia spp.) specialist in many regions where they occur in western North America. We collected fecal pellets from 159 captured female pronghorn from four herds in the Red Desert of Wyoming during winters of 2013 and 2014. We found small, but significant differences in diversity of the gut microbiome relative to study area, capture period, and body fat measurements. In addition, we found a difference in gut microbiome composition in pronghorn across two regions separated by Interstate 80. Results indicated that the fecal microbiome may be a potential biomarker for the spatial ecology of free-ranging ungulates. The core gut microbiome of these animals-including bacteria in the phyla Firmicutes (now Bacillota) and Bacteroidota-remained relatively stable across populations and biological metrics. These findings provide a baseline for the gut microbiome of pronghorn that could potentially be used as a target in monitoring health and population structure of pronghorn relative to habitat fragmentation, climate change, and management practices.


Assuntos
Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , Wyoming , RNA Ribossômico 16S/genética , Feminino , Fezes/microbiologia , Clima Desértico , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema
14.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990940

RESUMO

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Assuntos
Genoma Bacteriano , Fenótipo , Cor , Bactérias/genética , Bactérias/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Filogenia , Metagenoma , Estudo de Associação Genômica Ampla , Bacteroidetes/genética , Bacteroidetes/metabolismo
15.
J Infect Dev Ctries ; 18(6): 909-918, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38990992

RESUMO

INTRODUCTION: Despite the numerous studies demonstrating gut microbiota dysbiosis in obese subjects, there is no data on the association between obesity and gastric microbiota. The aim of this study was to address this gap in literature by comparing the composition of gastric microbiota in obese patients and a control group which included normal weight volunteers diagnosed with functional dyspepsia (FD). METHODOLOGY: A total of 19 obese patients, and 18 normal weight subjects with FD and normal endoscopy results were included in the study. The gastric tissue samples were collected from participants in both groups by bariatric surgery and endoscopy, respectively, and profiled using 16S ribosomal RNA gene sequencing. RESULTS: There was no significant difference in the α-diversity scores, while distinct gastric microbial compositions were detected in both groups. Significantly lower levels of Bacteroidetes and Fusobacteria, and higher Firmicutes/Bacteroidetes ratio were recorded in the obese patients. A total of 15 bacterial genera exhibited significant difference in gastric abundance with Prevotella_7, Veillonella, Cupriavidus, and Acinetobacter, present in frequencies higher than 3% in at least one subject group. CONCLUSIONS: Our study suggests a significant association between obesity and gastric microbiome composition. Future studies with larger sample size and gastric samples from subjects without any gastrointestinal complications are required to confirm our conclusions.


Assuntos
Dispepsia , Microbioma Gastrointestinal , Obesidade , RNA Ribossômico 16S , Humanos , Dispepsia/microbiologia , Obesidade/microbiologia , Obesidade/complicações , Adulto , Masculino , Feminino , RNA Ribossômico 16S/genética , Pessoa de Meia-Idade , Estômago/microbiologia , Disbiose/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Adulto Jovem
16.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000177

RESUMO

Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.


Assuntos
Aliivibrio fischeri , Antibacterianos , Daphnia , Eugenol , Testes de Sensibilidade Microbiana , Eugenol/farmacologia , Antibacterianos/farmacologia , Animais , Daphnia/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Ecotoxicologia , Cebolas/efeitos dos fármacos , Microbiologia do Solo , Adjuvantes Farmacêuticos/farmacologia , Bactérias/efeitos dos fármacos
17.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000260

RESUMO

Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.


Assuntos
Bactérias , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Plantas , Vesículas Extracelulares/metabolismo , Bactérias/metabolismo , Humanos , Plantas/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Leveduras/metabolismo , Portadores de Fármacos/química
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000264

RESUMO

Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae) and four multidrug-resistant pathogens. The proposed FCM protocol measures changes in scattered light and counts following disinfectant exposure, neutralization, and culture steps. Unlike other available FCM-based methods, this approach does not rely on autofluorescence measurements, impedance cytometry, or fluorescent dyes. The FCM scattered light signals revealed both decreased count rates and morphological changes after treatment with minimum inhibitory concentrations (MICs) and higher concentrations for all tested bacteria. The results from the FCM measurements showed excellent correlation with those from standard assays, providing a rapid tool for monitoring the susceptibility profile of clinical, multidrug-resistant pathogens to chemical disinfectants, which could support infection prevention and control procedures for healthcare environments. This label-free FCM protocol offers a novel and rapid tool for environmental health experts, aiding in the optimization of disinfectant selection for the prevention and control of HAIs.


Assuntos
Desinfetantes , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Desinfetantes/farmacologia , Citometria de Fluxo/métodos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
19.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000304

RESUMO

This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed.


Assuntos
Descontaminação , Desinfetantes , Fungos , Ácido Hipocloroso , Ácido Hipocloroso/farmacologia , Fungos/efeitos dos fármacos , Desinfetantes/farmacologia , Descontaminação/métodos , Bactérias/efeitos dos fármacos , Vírus/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Eletrônica
20.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000433

RESUMO

Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.


Assuntos
Secas , Manihot , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Manihot/microbiologia , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Microbiota , Raízes de Plantas/microbiologia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...