Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.243
Filtrar
1.
Food Res Int ; 159: 111630, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940814

RESUMO

The risk of Procambarus clarkii eating safety attracts consumers' big concern, but it has not been addressed properly. Therefore, this study was aimed to investigate eating safety and quality of live and dead Procambarus clarkii at different stages by total volatile basic nitrogen (TVB-N), biogenic amines (BAs), total aerobic plate counts (TPC) and microbiota. The results showed that in live Procambarus clarkii, TVB-N and TPC values were below the limit despite vitality, while cadaverine in gills, intestines, and glands (GIG) exceeded in articulo-mortis Procambarus clarkii. For the dead, it showed that Procambarus clarkii posed a high risk in eating safety within one to two days after death; and BAs of high risk were putrescine and cadaverine. The dominant microorganisms threatening eating safety and quality were potentially pathogenic bacteria of Citrobacter and Acinetobacter from the environment; and spoilage bacteria of Shewanella from viscera.


Assuntos
Astacoidea , Alimentos Marinhos , Animais , Aminas Biogênicas , Cadaverina , Água Doce , Nitrogênio , Alimentos Marinhos/análise
2.
Biochemistry ; 61(18): 2014-2024, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037799

RESUMO

The fungal species Aspergillus flavus produces an alkaloid terpenoid, flavunoidine, through a hybrid biosynthetic pathway combining both terpene cyclase and nonribosomal peptide synthetase enzymes. Flavunoidine consists of a tetracyclic, oxygenated sesquiterpene core decorated with dimethyl cadaverine and 5,5-dimethyl-l-pipecolate moieties. Unique to the flavunoidine biosynthetic pathway is FlvF, a putative enzyme implicated in stereospecific C-N bond formation as dimethyl cadaverine is linked to the sesquiterpene core to generate pre-flavunoidine. Here, we report the 2.6 Å resolution crystal structure of FlvF, which adopts the α-helical fold of a class I terpene synthase. However, FlvF is not a terpene synthase, as indicated by its lack of enzymatic activity with farnesyl diphosphate and its lack of signature metal ion binding motifs that would coordinate to catalytic Mg2+ ions. Thus, FlvF is the first example of a protein that adopts a terpene synthase fold but is not a terpene synthase. Two Bis-Tris molecules bind in the active site of FlvF, and the binding of these ligands guided the docking of pre-flavunoidine to generate a model of the enzyme-product complex. Phylogenetic analysis of FlvF and related fungal homologues reveals conservation of residues that interact with the tetracyclic sesquiterpene in this model, but less conservation of residues interacting with the pendant amino moiety. This may hint toward the possibility that alternative amino substrates can be linked to a common sesquiterpene core by FlvF homologues to generate flavunoidine congeners, such as the phospholipase C inhibitor hispidospermidin.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Alquil e Aril Transferases/genética , Cadaverina , Filogenia , Sesquiterpenos/metabolismo , Terpenos , Fosfolipases Tipo C
3.
Biosens Bioelectron ; 215: 114551, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839622

RESUMO

Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.


Assuntos
Técnicas Biossensoriais , Receptores Odorantes , Técnicas Biossensoriais/métodos , Cadaverina , Nariz Eletrônico , Putrescina , Receptores Odorantes/química , Reprodutibilidade dos Testes
4.
J Biol Chem ; 298(8): 102166, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35750210

RESUMO

Siderophores are conditionally essential metabolites used by microbes for environmental iron sequestration. Most Streptomyces strains produce hydroxamate-based desferrioxamine (DFO) siderophores composed of repeating units of N1-hydroxy-cadaverine (or N1-hydroxy-putrescine) and succinate. The DFO biosynthetic operon, desABCD, is highly conserved in Streptomyces; however, expression of desABCD alone does not account for the vast structural diversity within this natural product class. Here, we report the in vitro reconstitution and biochemical characterization of four DesD orthologs from Streptomyces strains that produce unique DFO siderophores. Under in vitro conditions, all four DesD orthologs displayed similar saturation steady-state kinetics (Vmax = 0.9-2.5 µM⋅min-1) and produced the macrocyclic trimer DFOE as the favored product, suggesting a conserved role for DesD in the biosynthesis of DFO siderophores. We further synthesized a structural mimic of N1-hydroxy-N1-succinyl-cadaverine (HSC)-acyl-adenylate, the HSC-acyl sulfamoyl adenosine analog (HSC-AMS), and obtained crystal structures of DesD in the ATP-bound, AMP/PPi-bound, and HSC-AMS/Pi-bound forms. We found HSC-AMS inhibited DesD orthologs (IC50 values = 48-53 µM) leading to accumulation of linear trimeric DFOG and di-HSC at the expense of macrocyclic DFOE. Addition of exogenous PPi enhanced DesD inhibition by HSC-AMS, presumably via stabilization of the DesD-HSC-AMS complex, similar to the proposed mode of adenylate stabilization where PPi remains buried in the active site. In conclusion, our data suggest that acyl-AMS derivatives may have utility as chemical probes and bisubstrate inhibitors to reveal valuable mechanistic and structural insight for this unique family of adenylating enzymes.


Assuntos
Sideróforos , Streptomyces , Monofosfato de Adenosina/metabolismo , Cadaverina/metabolismo , Desferroxamina , Ligases/metabolismo , Streptomyces/metabolismo
5.
Food Chem ; 394: 133489, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717912

RESUMO

Spoiled meat contains many pathogenic bacteria; hence, the intake of spoiled food can lead to various illnesses. To screen the freshness of food, in this study, we devised a ratiometric fluorescence sensor dicyanovinyl coumarin (CMDC) for the determination of cadaverine, an important biomarker for the spoilage of meat. CMDC underwent aza-Michael addition with cadaverine, exhibiting high sensitivity, fast response (50 s), and distinct fluorescence color transition. Test strips fabricated using CMDC showed a noticeable color change from red to green when exposed to cadaverine vapor. The test strips were successfully used to visually monitor the spoilage of beef based on the fluorescence color change. Furthermore, the as-developed test strip coupled with a smartphone provides a simple tool for consumers and suppliers to obtain information about meat quality.


Assuntos
Corantes , Carne , Animais , Cadaverina , Bovinos , Carne/análise
6.
Meat Sci ; 192: 108876, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709666

RESUMO

Food waste in perishable products calls for the development of cost-efficient and real-time freshness and shelf life assessment tools. The current study evaluated a newly developed cadaverine biosensor for its ability to assess the sensory freshness stage and microbial quality of modified atmosphere packed (MAP) pork cutlets under a realistic supply chain scenario. The experiment compared the cadaverine levels measured by the biosensor to liquid chromatography - tandem mass spectrometry (LC-MS/MS) cadaverine concentrations, and associated these to the shelf life estimation and freshness states determined by sensory and microbial evaluations during an 18-day storage period (5 °C). Results underlined the potential of cadaverine as a freshness biomarker as well as the applicability of the biosensor as a shelf life prediction tool. This is supported by the correlations obtained between sensory odour freshness evaluation and total viable counts with biosensor cadaverine levels for which the r obtained were 0.97 (<0.001) and 0.95 (<0.001), respectively.


Assuntos
Técnicas Biossensoriais , Carne de Porco , Carne Vermelha , Eliminação de Resíduos , Animais , Atmosfera , Cadaverina , Cromatografia Líquida , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Carne/análise , Suínos , Espectrometria de Massas em Tandem , Tecnologia
7.
J Biotechnol ; 353: 44-50, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660066

RESUMO

ATP plays an essential role in the substrate/product transmembrane transportation during whole-cell bioconversion. This study aimed to address the impact of ATP upon cadaverine synthesis by whole-cell biocatalysts. The results showed no significant change in the ATP content (P = 0.625), and the specific cadaverine yield (P = 0.374) was observed in enzyme-catalyzed cadaverine synthesis with exogenous addition of ATP, indicating that the enzyme-catalyzed process does not require the participation of ATP. Furthermore, a whole-cell biocatalyst co-overexpressed methionine adenosyltransferase (MetK), lysine decarboxylase (CadA), and lysine/cadaverine antiporter (CadB) was constructed and used to investigate the effect of ATP deficiency on the cadaverine production by conversion of L-methionine and L-lysine, simultaneously. The results showed no significant difference (P = 0.585) in the specific cadaverine content between high and low levels of intracellular ATP. In addition, the intra- and extracellular cadaverine concentration and the ratio of ATP/ADP of whole-cell biocatalyst were determined. Results showed that the extracellular cadaverine concentration was much higher than the intracellular concentration, and no significant changes in ATP/ADP ratio during cadaverine synthesis. In contrast, an inhibition effect of the proton motive force (PMF) inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) on cadaverine production was detected. These findings strongly suggest that cadaverine transport in whole-cell biocatalysts was energized by PMF rather than ATP. Finally, a model was proposed to describe cadaverine's PMF-driven transport under different external pHs during whole-cell biocatalysis. This study is the first to experimentally confirm that the cadaverine production by Escherichia coli whole-cell bioconversion is independent of intracellular ATP, which helps guide the subsequent construction of biocatalysts and optimize transformation conditions.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Difosfato de Adenosina , Trifosfato de Adenosina , Cadaverina , Escherichia coli/genética , Lisina
8.
Plant Biotechnol J ; 20(10): 1968-1982, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35748533

RESUMO

The polyamine putrescine (1,4-diaminobutane) contributes to cellular fitness in most organisms, where it is derived from the amino acids ornithine or arginine. In the chemical industry, putrescine serves as a versatile building block for polyamide synthesis. The green microalga Chlamydomonas reinhardtii accumulates relatively high putrescine amounts, which, together with recent advances in genetic engineering, enables the generation of a powerful green cell factory to promote sustainable biotechnology for base chemical production. Here, we report a systematic investigation of the native putrescine metabolism in C. reinhardtii, leading to the first CO2 -based bio-production of putrescine, by employing modern synthetic biology and metabolic engineering strategies. A CRISPR/Cas9-based knockout of key enzymes of the polyamine biosynthesis pathway identified ornithine decarboxylase 1 (ODC1) as a gatekeeper for putrescine accumulation and demonstrated that the arginine decarboxylase (ADC) route is likely inactive and that amine oxidase 2 (AMX2) is mainly responsible for putrescine degradation in C. reinhardtii. A 4.5-fold increase in cellular putrescine levels was achieved by engineered overexpression of potent candidate ornithine decarboxylases (ODCs). We identified unexpected substrate promiscuity in two bacterial ODCs, which exhibited co-production of cadaverine and 4-aminobutanol. Final pathway engineering included overexpression of recombinant arginases for improved substrate availability as well as functional knockout of putrescine degradation, which resulted in a 10-fold increase in cellular putrescine titres and yielded 200 mg/L in phototrophic high cell density cultivations after 10 days.


Assuntos
Carboxiliases , Putrescina , Aminoácidos , Arginina , Cadaverina , Dióxido de Carbono , Carboxiliases/genética , Carboxiliases/metabolismo , Nylons , Ornitina/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases , Poliaminas/metabolismo , Putrescina/metabolismo
9.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562866

RESUMO

Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Bioensaio , Cadaverina/farmacologia , Caseínas , Polarização de Fluorescência , Transglutaminases/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409114

RESUMO

Streptomyces coelicolor is a soil bacterium living in a habitat with very changeable nutrient availability. This organism possesses a complex nitrogen metabolism and is able to utilize the polyamines putrescine, cadaverine, spermidine, and spermine and the monoamine ethanolamine. We demonstrated that GlnA2 (SCO2241) facilitates S. coelicolor to survive under high toxic polyamine concentrations. GlnA2 is a gamma-glutamylpolyamine synthetase, an enzyme catalyzing the first step in polyamine catabolism. The role of GlnA2 was confirmed in phenotypical studies with a glnA2 deletion mutant as well as in transcriptional and biochemical analyses. Among all GS-like enzymes in S. coelicolor, GlnA2 possesses the highest specificity towards short-chain polyamines (putrescine and cadaverine), while its functional homolog GlnA3 (SCO6962) prefers long-chain polyamines (spermidine and spermine) and GlnA4 (SCO1613) accepts only monoamines. The genome-wide RNAseq analysis in the presence of the polyamines putrescine, cadaverine, spermidine, or spermine revealed indication of the occurrence of different routes for polyamine catabolism in S. coelicolor involving GlnA2 and GlnA3. Furthermore, GlnA2 and GlnA3 are differently regulated. From our results, we can propose a complemented model of polyamine catabolism in S. coelicolor, which involves the gamma-glutamylation pathway as well as other alternative utilization pathways.


Assuntos
Streptomyces coelicolor , Cadaverina , Ligases , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
11.
Food Chem ; 387: 132847, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405557

RESUMO

Chilled surimi has become increasingly popular owing to its superior texture and freshness. In this study, changes in the microbiota and gel properties during chilled surimi storage, and the contributions of dominant bacteria to the physicochemical properties of chilled surimi were investigated. The results showed that Pseudomonas gessardii, Aeromonas media, and Acinetobacter johnsonii were the dominant bacteria during chilled surimi storage. P. gessardii was the key bacteria that degraded protein in the process of surimi spoilage, which led to high total volatile base nitrogen (TVB-N), trichloroacetic acid (TCA)-soluble peptides as well as poor gel properties. Both P. gessardii and A. media were high putrescine producers, whereas only A. media produced cadaverine. In this study, spoilage microorganisms in chilled surimi were investigated for the first time, and it was found that P. gessardii had the greatest influence on surimi quality, which provides a research basis for in-depth study on the mechanism of microbial spoilage and the preservation of chilled surimi.


Assuntos
Carpas , Microbiota , Animais , Cadaverina , Armazenamento de Alimentos/métodos , Nitrogênio , Putrescina/análise
12.
Front Cell Infect Microbiol ; 12: 833269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237533

RESUMO

There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Biofilmes , Cadaverina , Humanos , Lisina/metabolismo , Metabolômica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
13.
Anal Chem ; 94(13): 5273-5283, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319200

RESUMO

Putrescine and cadaverine are toxic biogenic amines in spoiled food, which poses a serious threat to food security. In this work, we reported a highly sensitive three-dimensional (3D)-rosettelike surface-enhanced Raman spectroscopy (SERS) substrate functionalized with a p-mercaptobenzoic acid (p-MBA) monolayer to detect liquid and gaseous putrescine and cadaverine in pork samples. The SERS substrate was made by a combination of the merit of the 3D morphology of ZnO nanorod arrays on a flexible porous poly(vinylidene fluoride) (PVDF) membrane and the in situ chemical growth of Au nanoparticle seeds on Au film-coated ZnO nanorods, which produced a 3D-rosettelike BigAuNP/Au/ZnO/P heterostructure with abundant SERS-active hot spots that significantly enhanced the localized surface plasmonic resonance (LSPR) effect and charge-transfer (CT) effect of Raman enhancement. This SERS substrate showed high sensitivity, reproducibility, stability, and uniformity. With the p-MBA molecular monolayer as the sensing interface, our SERS substrate realized the highly sensitive and quantitative detection of liquid putrescine and cadaverine within 10 min, with a limit of detection (LOD) of 3.2 × 10-16 and 1.6 × 10-13 M, respectively. Additionally, the sensor showed efficient SERS responses to gaseous amine molecules at low concentrations (putrescine: 1.26 × 10-9 M, cadaverine: 2.5 × 10-9 M). Further, the sensor was successfully applied to determine the total content of putrescine and cadaverine. Moreover, the practicability of this SERS sensor was verified by the measurement of liquid and gaseous amines in pork samples, and it showed great potential applications for sensitive detection of food spoilage.


Assuntos
Ouro , Nanopartículas Metálicas , Cadaverina , Gases , Ouro/química , Nanopartículas Metálicas/química , Porosidade , Putrescina , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
14.
PLoS One ; 17(2): e0263389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113961

RESUMO

OBJECTIVE: Fermented sausage is popular all over the world for its rich nutrition and unique flavor. Sausage casing is one of the key factors affecting the quality of fermented sausage. However, there is little information involved in this field. METHODS: In this study, collagen casings were used as a wrapping material, and natural casings (pig casings) were used as a control. The effects of the two types of casings on biogenic amine content and other quality characteristics of fermented sausage were analyzed with increasing the storage time. RESULTS: The results showed that with storage time increasing, the hardness and gumminess of fermented sausage in collagen casing (CC) group were higher than those in pig casing (PC) group (P<0.05), while the elasticity in CC group was lower than that in PC group (P<0.05). In the processing and storage period, there was no significant difference in the type and content of flavor substances between the two groups. More importantly, the contents of tryptamine, putrescine, cadaverine, histamine, tyramine and phenyethylamine in fermented sausage of CC group were lower than those in PC group (P<0.05). CONCLUSION: In conclusion, this study revealed that CC could improve the quality characteristics of fermented sausage and reduce the content of biogenic amines in fermented sausage, which provides a theoretical basis for the choice of casings in industrial production in the future.


Assuntos
Colágeno/química , Análise de Alimentos/métodos , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Aminas , Animais , Aminas Biogênicas/análise , Reatores Biológicos , Cadaverina/análise , Fermentação , Histamina/análise , Concentração de Íons de Hidrogênio , Fenetilaminas/análise , Putrescina/análise , Ovinos , Triptaminas/análise , Tiramina/análise
15.
Bioresour Technol ; 349: 126865, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183730

RESUMO

Cadaverine, a derivative of l-lysine, has been used as a monomer for the synthesis of bio-based nylon-5,6. This study engineered Halomonas bluephagenesis TD1.0 by blocking the feedback inhibition, overexpressing the key l-lysine synthesis genes, strengthening the l-lysine export system and increasing the supply of oxaloacetate for production of l-lysine in the supernatant and PHB in the cells. Subsequently, cadaverine biosynthetic pathway was constructed in H. campaniensis LC-9 to improve the efficiency of de novo cadaverine biosynthesis which combines l-lysine producing H. bluephagenesis TDL8-68-259 and cadaverine producing H. campaniensis LC-9-ldcC-lysP. When H. campaniensis LC-9-ldcC-lysP was used as a whole cell catalysis for cadaverine production, the conversion efficiency of l-lysine to cadaverine reached 100% in the presence of 0.05% Triton X-100 for cell membrane permeability enhancement, resulting in 118 g L-1 cadaverine formed in the fermentor. Thus, Halomonas spp. have been successfully constructed for l-lysine and cadaverine production.


Assuntos
Halomonas , Vias Biossintéticas , Cadaverina/metabolismo , Halomonas/genética , Halomonas/metabolismo , Lisina/metabolismo
16.
Food Chem ; 380: 132214, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35093653

RESUMO

This study was aimed at evaluating the effect of basic ingredients (white radish, red pepper powder, garlic, ginger, Welsh onion, fish sauce, and sticky rice porridge) used for kimchi seasoning on the accumulation of biogenic amines (BAs) during kimchi fermentation. Initial accumulation of cadaverine, putrescine, histamine, 2-phenylethylamine, tyramine, and tryptamine occurred mainly owing to fish sauce. Putrescine and tyramine content increased rapidly, reaching 14-15-times the initial values after 7 days of fermentation. Total BA content of kimchi without fish sauce was 42-63% lower than that of kimchi with 5% fish sauce. Moreover, the total BA content of kimchi with 8% red pepper powder added was 25-44% lower than that of kimchi without it. These results show that addition of less fish sauce and more red pepper powder can effectively decrease the total BA content in kimchi.


Assuntos
Aminas Biogênicas , Animais , Cadaverina , Fermentação , Histamina/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35084293

RESUMO

Trappist cheese (semi-hard, rennet-coagulated cheese with round eyes) was manufactured and matured for 4 weeks at 12 ± 1°C, 85% relative humidity (RH). The effect of microbial transglutaminase (MTGase) was followed by measuring the levels of free amino acids (FAAs) and biogenic amines (BAs) every 2 weeks during 4 weeks of cheese ripening. Results show that MTGase can decrease the cadaverine production by 30%, but only at the initial stage of ripening. Application of MTGase results in 49% less putrescine, 12% less tyramine production at the end of 4 weeks ripening time, and can decrease histamine levels by 8% after 2 weeks of ripening time in the examined semi-hard cheese type.


Assuntos
Queijo , Aminas Biogênicas/análise , Cadaverina , Transglutaminases , Tiramina/análise
18.
Biosens Bioelectron ; 200: 113908, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34972042

RESUMO

Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5-8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17-186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.


Assuntos
Técnicas Biossensoriais , Grafite , Animais , Aminas Biogênicas , Cadaverina , Bovinos , Nariz Eletrônico , Putrescina , Ovinos
19.
Food Microbiol ; 102: 103920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809946

RESUMO

The aim of this study was to determine the biogenic amines (BAs) formed in chicken breast meat packaged using different techniques (AP, Hi-O2-MAP or VP) during the storage under different conditions (cold room or display case), to correlate the microbiological quality (TPC, LAB, Pseudomonas spp. and Enterobacteriaceae) of chicken meat with BAs formation and to assess the suitability of selected biogenic amines as indicators of chicken meat spoilage. The initial TPC of chicken fillets was 2.57-3.04 log cfu/g. Over time a systematic significant (p ≤ 0.05) increase in TPC was observed to >7.5 log cfu/g (AP and VP; display case) determined on day 9. It was found that cadaverine and tyramine dominated in quantitative terms in chicken fillets, regardless of packaging technique and storage conditions (166.00 mg/kg in AP meat in cold room on day 9 and 175.03 mg/kg on day 9 in MAP meat in display case, respectively). Taking into account the BAI, high and significant (p ≤ 0.05) correlation coefficients (from 0.51 to 0.95) were obtained with all analyzed indicators of microbiological quality. The concentration of cadaverine, putrescine contents or BAI can potentially serve as chemical quality indicator for freshness of chicken meat.


Assuntos
Aminas Biogênicas , Embalagem de Alimentos , Aves Domésticas/microbiologia , Animais , Aminas Biogênicas/análise , Cadaverina/análise , Galinhas , Microbiologia de Alimentos , Conservação de Alimentos , Carne/análise , Tiramina/análise
20.
Food Chem ; 371: 131172, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563969

RESUMO

The purpose of this study was to evaluate the content of biogenic amines (BAs) in wines using dispersive liquid-liquid microextraction-gas chromatography-mass spectrometry (DLLME-GC-MS). An additional objective was to assess the correlations between selected parameters characterizing the samples such as the content of BAs, sugars, and organic acids, pH, and total acidity. Wines produced from the same grape variety in which alcoholic fermentation (AF) was carried out by different yeast strains and in which malolactic fermentation (MLF) was spontaneous, differed in the content of biogenic amines. The concentrations of putrescine, cadaverine and tryptamine were higher in the Rondo wines (237-405, 34.04-61.11,

Assuntos
Vitis , Vinho , Aminas Biogênicas/análise , Cadaverina/análise , Fermentação , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...