Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.281
Filtrar
1.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949191

RESUMO

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mitocôndrias/metabolismo , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Células A549 , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transcriptoma , Fases de Leitura Aberta , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Viroporinas
2.
Virol J ; 21(1): 153, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972989

RESUMO

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.


Assuntos
Infecções por Astroviridae , Aves , Fezes , Variação Genética , Genoma Viral , Filogenia , Animais , Hong Kong , Aves/virologia , Fezes/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Animais Selvagens/virologia , Doenças das Aves/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Avastrovirus/genética , Avastrovirus/classificação , Avastrovirus/isolamento & purificação , RNA Viral/genética , Fases de Leitura Aberta , Astroviridae/genética , Astroviridae/isolamento & purificação , Astroviridae/classificação
3.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981875

RESUMO

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Assuntos
Genoma Viral , Luffa , Fases de Leitura Aberta , Filogenia , Genoma Viral/genética , Luffa/virologia , Animais , China , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Sequenciamento Completo do Genoma , Proteínas Virais/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
4.
Arch Virol ; 169(8): 161, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981885

RESUMO

Here, we report a novel ourmia-like mycovirus, named "Phomopsis asparagi magoulivirus 1" (PaMV1), derived from the phytopathogenic fungus Phomopsis asparagi. The genome of PaMV1 consists of a positive-sense single-stranded RNA (+ ssRNA) that is 2,639 nucleotides in length, with a GC content of 57.13%. It contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 686 amino acids with a molecular mass of 78.57 kDa. Phylogenetic analysis based on RdRp sequences revealed that PaMV1 grouped together with Diaporthe gulyae magoulivirus 1 (DgMV1) in a distinct clade. Sequence comparisons and phylogenetic analysis suggest that PaMV1 is a novel member of the genus Magoulivirus, family Botourmiaviridae.


Assuntos
Micovírus , Genoma Viral , Fases de Leitura Aberta , Phomopsis , Filogenia , RNA Viral , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Phomopsis/virologia , RNA Viral/genética , Sequenciamento Completo do Genoma , RNA Polimerase Dependente de RNA/genética , Composição de Bases , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Sequência de Bases , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação
5.
Sci Adv ; 10(28): eadn3628, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985879

RESUMO

The expression of tumor-specific antigens during cancer progression can trigger an immune response against the tumor. Here, we investigate if microproteins encoded by noncanonical open reading frames (ncORFs) are a relevant source of tumor-specific antigens. We analyze RNA sequencing data from 117 hepatocellular carcinoma (HCC) tumors and matched healthy tissue together with ribosome profiling and immunopeptidomics data. Combining human leukocyte antigen-epitope binding predictions and experimental validation experiments, we conclude that around 40% of the tumor-specific antigens in HCC are likely to be derived from ncORFs, including two peptides that can trigger an immune response in humanized mice. We identify a subset of 33 tumor-specific long noncoding RNAs expressing novel cancer antigens shared by more than 10% of the HCC samples analyzed, which, when combined, cover a large proportion of the patients. The results of the study open avenues for extending the range of anticancer vaccines.


Assuntos
Antígenos de Neoplasias , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fases de Leitura Aberta , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Animais , Camundongos , Estudos de Coortes , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Micropeptídeos
6.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995418

RESUMO

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Assuntos
Cordyceps , Genoma Viral , Filogenia , RNA Viral , Cordyceps/genética , RNA Viral/genética , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Proteínas Virais/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , RNA Polimerase Dependente de RNA/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Sequência de Aminoácidos , Fases de Leitura Aberta
7.
Methods Mol Biol ; 2836: 3-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995532

RESUMO

Proteogenomics has revealed the translation of unannotated open reading frames (ORFs) present in mRNAs and in noncoding RNAs (ncRNAs). OpenProt annotates all ORFs with a minimum of 30 codons in the transcriptome of several species and displays many functional features associated with the corresponding proteins. Two types of proteins are annotated: reference or canonical proteins which are proteins already annotated in UniProt, RefSeq, or Ensembl and noncanonical proteins. Noncanonical proteins form two groups: predicted novel isoforms that display a significant level of homology with a reference protein and alternative proteins that are new proteins with no significant homology to known proteins. This chapter describes how to check whether a gene and/or transcript contains multiple open reading frames and how to use OpenProt databases for the detection of alternative proteins and novel isoforms by mass spectrometry-based proteomics.


Assuntos
Espectrometria de Massas , Fases de Leitura Aberta , Proteoma , Espectrometria de Massas/métodos , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Anotação de Sequência Molecular , Proteogenômica/métodos
8.
Methods Mol Biol ; 2836: 19-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995533

RESUMO

Genome annotation has historically ignored small open reading frames (smORFs), which encode a class of proteins shorter than 100 amino acids, collectively referred to as microproteins. This cutoff was established to avoid thousands of false positives due to limitations of pure genomics pipelines. Proteogenomics, a computational approach that combines genomics, transcriptomics, and proteomics, makes it possible to accurately identify these short sequences by overlaying different levels of omics evidence. In this chapter, we showcase the use of µProteInS, a bioinformatics pipeline developed for the identification of unannotated microproteins encoded by smORFs in bacteria. The workflow covers all the steps from quality control and transcriptome assembly to the scoring and post-processing of mass spectrometry data. Additionally, we provide an example on how to apply the pipeline's machine learning method to identify high-confidence spectra and pinpoint the most reliable identifications from large datasets.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Fases de Leitura Aberta , Proteogenômica , Fluxo de Trabalho , Fases de Leitura Aberta/genética , Proteogenômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Proteômica/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Software , Espectrometria de Massas/métodos , Micropeptídeos
9.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990253

RESUMO

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Assuntos
Ascomicetos , Micovírus , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Ascomicetos/virologia , Ascomicetos/genética , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Sequência de Aminoácidos
10.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000497

RESUMO

This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Sinorhizobium , Microbiologia do Solo , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Sinorhizobium/genética , Sinorhizobium/virologia , Sinorhizobium/fisiologia , Fases de Leitura Aberta
11.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007232

RESUMO

Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.


Assuntos
Bacteriófagos , Clavibacter , Genoma Viral , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Turquia , Composição de Bases , DNA Viral/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
12.
Genome Biol ; 25(1): 183, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978079

RESUMO

BACKGROUND: Recent studies uncovered pervasive transcription and translation of thousands of noncanonical open reading frames (nORFs) outside of annotated genes. The contribution of nORFs to cellular phenotypes is difficult to infer using conventional approaches because nORFs tend to be short, of recent de novo origins, and lowly expressed. Here we develop a dedicated coexpression analysis framework that accounts for low expression to investigate the transcriptional regulation, evolution, and potential cellular roles of nORFs in Saccharomyces cerevisiae. RESULTS: Our results reveal that nORFs tend to be preferentially coexpressed with genes involved in cellular transport or homeostasis but rarely with genes involved in RNA processing. Mechanistically, we discover that young de novo nORFs located downstream of conserved genes tend to leverage their neighbors' promoters through transcription readthrough, resulting in high coexpression and high expression levels. Transcriptional piggybacking also influences the coexpression profiles of young de novo nORFs located upstream of genes, but to a lesser extent and without detectable impact on expression levels. Transcriptional piggybacking influences, but does not determine, the transcription profiles of de novo nORFs emerging nearby genes. About 40% of nORFs are not strongly coexpressed with any gene but are transcriptionally regulated nonetheless and tend to form entirely new transcription modules. We offer a web browser interface ( https://carvunislab.csb.pitt.edu/shiny/coexpression/ ) to efficiently query, visualize, and download our coexpression inferences. CONCLUSIONS: Our results suggest that nORF transcription is highly regulated. Our coexpression dataset serves as an unprecedented resource for unraveling how nORFs integrate into cellular networks, contribute to cellular phenotypes, and evolve.


Assuntos
Regulação Fúngica da Expressão Gênica , Fases de Leitura Aberta , Saccharomyces cerevisiae , Transcrição Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Evolução Molecular , Biossíntese de Proteínas
13.
Cell Syst ; 15(7): 597-609.e4, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38971149

RESUMO

Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Fases de Leitura Aberta , RNA Mensageiro , Ribossomos , RNA Mensageiro/genética , Ribossomos/metabolismo , Ribossomos/genética , Fases de Leitura Aberta/genética , Humanos , Biossíntese de Proteínas/genética , Expressão Gênica/genética , Plasmídeos/genética , Animais , Genes Reporter/genética
14.
Arch Virol ; 169(8): 162, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985350

RESUMO

Using a high-throughput sequencing (HTS) approach, we report the discovery of a new alphasatellite identified in a winter barley plant collected in France in 2022 that was also infected by wheat dwarf virus (WDV). The presence of the satellite and of WDV was confirmed by several independent PCR assays, and the complete genome sequence was determined. The circular satellite genome is 1424 nt long and shows typical hallmarks of members of the subfamily Geminialphasatellitinae, including a replication-associated hairpin with a CAGTATTAC sequence and a Rep-encoding open reading frame (ORF). It also possesses a second ORF, embedded in a different frame within the Rep ORF, which is also observed in clecrusatellites and a few other members of the family Alphasatellitidae. Pairwise sequence comparisons and phylogenetic analysis showed that this satellite represents a novel species. Its closest relatives are in the genus Colecusatellite, but it likely represents a new genus given its divergence from other genera of the subfamily Geminialphasatellitinae. Given that WDV was the only virus observed in coinfection with the satellite, the name "wheat dwarf virus-associated alphasatellite" is proposed for this novel agent.


Assuntos
Genoma Viral , Hordeum , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , França , Hordeum/virologia , Doenças das Plantas/virologia , Genoma Viral/genética , Geminiviridae/genética , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Vírus Satélites/genética , Vírus Satélites/classificação , Vírus Satélites/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala
15.
Arch Virol ; 169(8): 159, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972922

RESUMO

In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.


Assuntos
Cordyceps , Micovírus , Genoma Viral , Filogenia , Vírus de RNA , Cordyceps/genética , Cordyceps/virologia , Cordyceps/isolamento & purificação , Genoma Viral/genética , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Fases de Leitura Aberta , Proteínas Virais/genética , Proteínas do Capsídeo/genética
16.
Nat Commun ; 15(1): 6187, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043684

RESUMO

Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs. In this study, we investigate how the evolution an ORF could be constrained by its overlap with an existing ORF in three different reading frames. Using a combination of mathematical modeling and genome/transcriptome data analysis in two different model organisms, we show that antisense overlap can increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, especially in one of the three reading frames. In addition to rationalising the repeatedly reported prevalence of de novo emerged genes in antisense transcripts, our work also provides a generic modeling and an analytical framework that can be used to understand evolution of antisense genes.


Assuntos
Evolução Molecular , Fases de Leitura Aberta , RNA Antissenso , RNA Antissenso/genética , RNA Antissenso/metabolismo , Fases de Leitura Aberta/genética , Animais , Modelos Genéticos , Transcriptoma
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891989

RESUMO

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Assuntos
Afídeos , Genoma Viral , Fases de Leitura Aberta , Filogenia , Animais , Afídeos/virologia , China , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Proteínas Virais/química , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/classificação , RNA Viral/genética
18.
Viruses ; 16(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38932193

RESUMO

In the current study, a novel strain of Fusarium oxysporum alternavirus 1 (FoAV1) was identified from the Fusarium oxysporum f. sp. melonis (FOM) strain T-BJ17 and was designated as Fusarium oxysporum alternavirus 1-FOM (FoAV1-FOM). Its genome consists of four dsRNA segments of 3515 bp (dsRNA1), 2663 bp (dsRNA2), 2368 bp (dsRNA3), and 1776 bp (dsRNA4) in length. Open reading frame 1 (ORF1) in dsRNA1 was found to encode a putative RNA-dependent RNA polymerase (RdRp), whose amino acid sequence was 99.02% identical to that of its counterpart in FoAV1; while ORF2 in dsRNA2, ORF3 in dsRNA3, and ORF4 in dsRNA4 were all found to encode hypothetical proteins. Strain T-BJ17-VF, which was verified to FoAV1-FOM-free, was obtained using single-hyphal-tip culture combined with high-temperature treatment to eliminate FoAV1-FOM from strain T-BJ17. The colony growth rate, ability to produce spores, and virulence of strain T-BJ17 were significantly lower than those of T-BJ17-VF, while the dry weight of the mycelial biomass and the sensitivity to difenoconazole and pydiflumetofen of strain T-BJ17 were greater than those of T-BJ17-VF. FoAV1-FOM was capable of 100% vertical transmission via spores. To our knowledge, this is the first time that an alternavirus has infected FOM, and this is the first report of hypovirulence and increased sensitivity to difenoconazole and pydiflumetofen induced by FoAV1-FOM infection in FOM.


Assuntos
Micovírus , Fusarium , Genoma Viral , Doenças das Plantas , Triazóis , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/virologia , Fusarium/patogenicidade , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Micovírus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Triazóis/farmacologia , Dioxolanos/farmacologia , Virulência , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/classificação , Filogenia , Fases de Leitura Aberta , Triticum/microbiologia , Triticum/virologia
19.
Viruses ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932218

RESUMO

Chikungunya virus (CHIKV) is transmitted by mosquito bites and causes chikungunya fever (CHIKF). CHIKV has a single-stranded RNA genome and belongs to a single serotype with three genotypes. The Asian lineage has recently emerged in the Western Hemisphere, likely due to travel-associated introduction. Genetic variation accumulates in the CHIKV genome as the virus replicates, creating new lineages. Whole genome sequencing is ideal for studying virus evolution and spread but is expensive and complex. This study investigated whether specific, highly variable regions of the CHIKV genome could recapitulate the phylogeny obtained with a complete coding sequence (CDS). Our results revealed that concatenated highly variable regions accurately reconstructed CHIKV phylogeny, exhibiting statistically indistinguishable branch lengths and tree confidence compared to CDS. In addition, these regions adequately inferred the evolutionary relationships among CHIKV isolates from the American outbreak with similar results to the CDS. This finding suggests that highly variable regions can effectively capture the evolutionary relationships among CHIKV isolates, offering a simpler approach for future studies. This approach could be particularly valuable for large-scale surveillance efforts.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Variação Genética , Genoma Viral , Filogenia , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/virologia , Humanos , Genótipo , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Genômica/métodos , Fases de Leitura Aberta , Animais , RNA Viral/genética
20.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892217

RESUMO

Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.


Assuntos
Inflamação , Interleucina-6 , Lipopolissacarídeos , Microglia , Proteína-Arginina N-Metiltransferases , Fator de Necrose Tumoral alfa , Humanos , Linhagem Celular , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-6/metabolismo , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Fases de Leitura Aberta , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Cromossomos Humanos Par 15
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA