Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.289
Filtrar
1.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949022

RESUMO

Multiple approaches have targeted voltage-gated sodium (Nav) channels for analgesia. In this issue of the JCI, Shin et al. identified a peptide aptamer, NaViPA1, carrying a short polybasic motif flanked by serine residues in a structurally disordered region of loop 1 in tetrodotoxin-sensitive (TTX-S) but not tetrodotoxin-resistant (TTX-R) channels. NaViPA1h inhibited TTX-S NaV channels and attenuated excitability of sensory neurons. Delivery of NaViPA1 in vivo via adeno-associated virions restricted its expression to peripheral sensory neurons and induced analgesia in rats. Targeting of short linear motifs in this manner may provide a gene therapy modality, with minimal side effects due to its peripherally-restricted biodistribution, which opens up a therapeutic strategy for hyperexcitability disorders, including pain.


Assuntos
Terapia Genética , Animais , Humanos , Ratos , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Células Receptoras Sensoriais/metabolismo , Dor/genética , Dor/metabolismo , Dor/tratamento farmacológico , Motivos de Aminoácidos
2.
J Gen Physiol ; 156(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042091

RESUMO

ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.


Assuntos
Ativação do Canal Iônico , Venenos de Aranha , Animais , Humanos , Venenos de Aranha/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Células HEK293 , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Xenopus laevis
3.
Parasit Vectors ; 17(1): 292, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978086

RESUMO

BACKGROUND: The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS: Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS: The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS: These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.


Assuntos
Aedes , Resistência a Inseticidas , Mosquitos Vetores , Animais , Moçambique , Resistência a Inseticidas/genética , Aedes/genética , Aedes/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Mutação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inseticidas/farmacologia , Madagáscar , Repetições de Microssatélites/genética , Feminino , Canais de Sódio Disparados por Voltagem/genética
4.
Parasit Vectors ; 17(1): 307, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014392

RESUMO

BACKGROUND: Pyrethroid chemicals are one of the main acaricides used against ticks. Resistance to these chemicals has been reported to be associated with mutations in the voltage-gated sodium channel (VGSC) gene of the Rhipicephalus microplus. This study investigates R. microplus resistance to pyrethroids in Guangxi region of China, marking one of the first research efforts in this area. The findings are intended to provide vital baseline for the effective implementation of localized tick control strategies. METHODS: From March to July 2021, 447 R. microplus tick samples were collected from five prefecture-level cities in Guangxi. Allele-specific polymerase chain reaction (AS-PCR) was used to amplify segments C190A and G215T of the domain II S4-5 linker and T2134A of domain III S6 in the VGSC, to detect nucleotide mutations associated with resistance to pyrethroid acaricides. Subsequent analyses were conducted to ascertain the prevalence, types of mutations, and genotypic distributions within the sampled populations. RESULTS: Mutations within VGSC gene were identified across all five studied populations of R. microplus, although the mutation rates remained generally low. Specifically, the most prevalent mutation was C190A, observed in 4.9% of the samples (22/447), followed by G215T at 4.0% (18/447), and T2134A at 1.3% (6/447). The distribution of mutations across three critical sites of the VGSC gene revealed four distinct mutation types: C190A, G215T, C190A + G215T, and T2134A. Notably, the single mutation C190A had the highest mutation frequency, accounting for 4.3%, and the C190A + G215T combination had the lowest, at only 0.7%. The analysis further identified seven genotypic combinations, with the wild-type combination C/C + G/G + T/T predominating at a frequency of 90.4%. Subsequently, the C/A + G/G + T/T combination was observed at a frequency of 4.3%, whereas the C/C + T/T + T/T combination exhibited the lowest frequency (0.2%). Additionally, no instances of simultaneous mutations at all three sites were detected. Geographical differences in mutation types were apparent. Both samples from Hechi to Chongzuo cities exhibited the same three mutation types; however, C190A was the most prevalent in Hechi, while G215T dominated in Chongzuo. In contrast, samples from Beihai to Guilin each exhibited only one mutation type: G215T occurred in 12.5% (4/32) of Beihai samples, and C190A in 7.5% (4/53) of Guilin samples. CONCLUSIONS: These findings underscore the relatively low frequency of VGSC gene mutations in R. microplus associated with pyrethroid resistance in the Guangxi, China. Moreover, the variation in mutation types and genotypic distributions across different locales highlights the need for regionalized strategies in monitoring and managing pyrethroid resistance in tick populations. This molecular surveillance is crucial for informing targeted control measures and mitigating the risk of widespread resistance emergence.


Assuntos
Acaricidas , Mutação , Piretrinas , Rhipicephalus , Canais de Sódio Disparados por Voltagem , Animais , Rhipicephalus/genética , Rhipicephalus/efeitos dos fármacos , China/epidemiologia , Canais de Sódio Disparados por Voltagem/genética , Piretrinas/farmacologia , Acaricidas/farmacologia , Genótipo , Resistência a Medicamentos/genética , Alelos , Feminino , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Infestações por Carrapato/epidemiologia
5.
Cell Chem Biol ; 31(7): 1233-1235, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029451

RESUMO

In this issue of Cell Chemical Biology, Elleman et al.1 introduce a transformative chemical approach to control neuronal activity with high spatial and temporal resolution. The authors present STX-bpc, a potent neurotoxin that naturally inhibits voltage-gated sodium channels (NaVs), complementing available optogenetic methods for manipulating neuronal activity, cellular communication, and behavior.


Assuntos
Neurônios , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/citologia , Animais , Humanos , Optogenética , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Neurotoxinas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
6.
Drug Deliv Transl Res ; 14(8): 2112-2145, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861139

RESUMO

Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.


Assuntos
Nanomedicina , Manejo da Dor , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Manejo da Dor/métodos , Animais , Canais de Sódio Disparados por Voltagem/metabolismo , Anestésicos Locais/administração & dosagem , Anestésicos Locais/uso terapêutico , Anestésicos Locais/farmacocinética , Dor/tratamento farmacológico
7.
Sci Rep ; 14(1): 13584, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866908

RESUMO

A novel, turnkey, field-based workflow was developed and validated using Rhipicephalus microplus DNA as a template to detect the presence of the voltage-gated sodium channel kdr mutation. The field-based compatible workflow comprises manual sample homogenization for DNA extraction, PCR amplification of the targets in a closed tube, and end-point detection of the PCR products. An R. microplus species-specific assay was also included to confirm species identity and ensure the validity of the kdr mutation assay. The assays were sensitive and specific to the targets, and the workflow resulted in a turnaround time of approximately 1 h at a low cost. The novel combination of PCR with closed-tube and end-point fluorescent detection allows for easy conversion of existing conventional lab-based PCR assays into field-based detection assays. The incorporation of custom-designed 3D-printed components in the workflow provides easy adaptability and modification of the components for diverse nucleic acid detection workflows.


Assuntos
Reação em Cadeia da Polimerase , Rhipicephalus , Animais , Rhipicephalus/genética , Reação em Cadeia da Polimerase/métodos , Acaricidas/farmacologia , Técnicas de Genotipagem/métodos , Resistência a Medicamentos/genética , Mutação , Genótipo , Canais de Sódio Disparados por Voltagem/genética
8.
Mol Pharmacol ; 106(2): 92-106, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38821630

RESUMO

Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors. SIGNIFICANCE STATEMENT: The authors synthesized a novel small molecule (XOB) that simultaneously antagonizes two key therapeutic targets of bipolar disorder, 5-HT2A receptors and voltage-gated sodium channels, in heterologous cells, and inhibits the intrinsic excitability of mouse prefrontal cortex layer V pyramidal neurons in brain slices. XOB represents a valuable new proof-of-principle tool for future preclinical investigations and provides a novel molecular approach to the pharmacological treatment of complex neuropsychiatric disease, which often requires a combination of therapeutics for sufficient patient benefit.


Assuntos
Receptor 5-HT2A de Serotonina , Animais , Camundongos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Humanos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Células HEK293 , Cricetulus
9.
J Agric Food Chem ; 72(21): 11958-11967, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38761134

RESUMO

Megalurothrips usitatus (Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of M. usitatus resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in M. usitatus was first subcloned and successfully expressed in Xenopus oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of M. usitatus to pyrethroids and provide guidance for the comprehensive control of M. usitatus in the future.


Assuntos
Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Mutação , Piretrinas , Canais de Sódio Disparados por Voltagem , Piretrinas/farmacologia , Animais , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/genética , Mariposas/efeitos dos fármacos
10.
Sci Rep ; 14(1): 12216, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806622

RESUMO

The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.


Assuntos
Aedes , Dengue , Resistência a Inseticidas , Inseticidas , Mutação , Piretrinas , Animais , Piretrinas/farmacologia , Aedes/genética , Aedes/efeitos dos fármacos , Aedes/virologia , Resistência a Inseticidas/genética , China/epidemiologia , Dengue/transmissão , Dengue/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Larva/efeitos dos fármacos , Larva/genética , Larva/virologia , Canais de Sódio Disparados por Voltagem/genética , Controle de Mosquitos/métodos , Nitrilas/farmacologia
11.
Nat Commun ; 15(1): 3691, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693179

RESUMO

Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Humanos , Animais , Células HEK293 , Modelos Moleculares
12.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791333

RESUMO

Some signaling processes mediated by G protein-coupled receptors (GPCRs) are modulated by membrane potential. In recent years, increasing evidence that GPCRs are intrinsically voltage-dependent has accumulated. A recent publication challenged the view that voltage sensors are embedded in muscarinic receptors. Herein, we briefly discuss the evidence that supports the notion that GPCRs themselves are voltage-sensitive proteins and an alternative mechanism that suggests that voltage-gated sodium channels are the voltage-sensing molecules involved in such processes.


Assuntos
Receptores Acoplados a Proteínas G , Canais de Sódio Disparados por Voltagem , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Transdução de Sinais , Potenciais da Membrana
13.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
14.
Proc Natl Acad Sci U S A ; 121(15): e2317769121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564633

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canais de Sódio Disparados por Voltagem , Humanos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Mutação
15.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557788

RESUMO

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Assuntos
Cálcio , Canais de Sódio Disparados por Voltagem , Abelhas , Animais , Canais de Sódio Disparados por Voltagem/química , Íons
16.
Pestic Biochem Physiol ; 201: 105853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685212

RESUMO

Ion channels on cell membrane are molecular targets of more than half peptide neurotoxins from spiders. From Pardosa pseudoannulata, a predatory spider on a range of insect pests, we characterized a peptide neurotoxin PPTX-04 with an insecticidal activity. PPTX-04 showed high toxicity to Nilaparvata lugens, a main prey of P. pseudoannulata, and the toxicity was not affected by the resistance to etofenprox (IUPAC chemical name:1-ethoxy-4-[2-methyl-1-[(3-phenoxyphenyl)methoxy]propan-2-yl]benzene, purity: 99%). On N. lugens voltage-gated sodium channel NlNav1 expressed in Xenopus oocytes, PPTX-04 prolonged the channel opening and induced tail currents, which is similar to pyrethroid insecticides. However, PPTX-04 potency on NlNav1 was not affected by mutations conferring pyrethroid resistance in insects, which revealed that PPTX-04 and pyrethroids should act on different receptors in NlNav1. In contrast, two mutations at the extracellular site 4 significantly reduced PPTX-04 potency, which indicated that PPTX-04 would act on a potential receptor containing the site 4 in NlNav1. The result from the molecular docking supported the conclusion that the binding pocket of PPTX-04 in NlNav1 should contain the site 4. In summary, PPTX-04 had high insecticidal activity through acting on a distinct receptor site in insect Nav, and was a potential resource to control insect pests and manage resistance to pyrethroids.


Assuntos
Inseticidas , Neurotoxinas , Venenos de Aranha , Aranhas , Canais de Sódio Disparados por Voltagem , Animais , Inseticidas/farmacologia , Inseticidas/química , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Venenos de Aranha/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Neurotoxinas/farmacologia , Neurotoxinas/toxicidade , Piretrinas/farmacologia , Hemípteros/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Xenopus laevis , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química
17.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622750

RESUMO

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Assuntos
Culex , Culicidae , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Inseticidas/farmacologia , Íntrons/genética , Mosquitos Vetores/genética , Culex/genética , Mutação , Canais de Sódio Disparados por Voltagem/genética , Resistência a Inseticidas/genética
18.
Nat Commun ; 15(1): 2306, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485923

RESUMO

The poison dart toxin batrachotoxin is exceptional for its high potency and toxicity, and for its multifaceted modification of the function of voltage-gated sodium channels. By using cryogenic electron microscopy, we identify two homologous, but nonidentical receptor sites that simultaneously bind two molecules of toxin, one at the interface between Domains I and IV, and the other at the interface between Domains III and IV of the cardiac sodium channel. Together, these two bound toxin molecules stabilize α/π helical conformation in the S6 segments that gate the pore, and one of the bound BTX-B molecules interacts with the crucial Lys1421 residue that is essential for sodium conductance and selectivity via an apparent water-bridged hydrogen bond. Overall, our structure provides insight into batrachotoxin's potency, efficacy, and multifaceted functional effects on voltage-gated sodium channels via a dual receptor site mechanism.


Assuntos
Venenos , Canais de Sódio Disparados por Voltagem , Batraquiotoxinas/metabolismo , Sítios de Ligação , Conformação Molecular , Canais de Sódio Disparados por Voltagem/metabolismo
19.
Sci Rep ; 14(1): 6761, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514708

RESUMO

Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.


Assuntos
Calpaína , Canais de Sódio Disparados por Voltagem , Animais , Camundongos , Potenciais de Ação , Calpaína/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
20.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465747

RESUMO

Voltage-gated sodium channels (Naáµ¥) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naáµ¥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naáµ¥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naáµ¥1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naáµ¥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naáµ¥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naáµ¥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naáµ¥-related diseases.


Assuntos
Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Ativação do Canal Iônico/fisiologia , Domínios Proteicos , Canais Iônicos , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA