Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.654
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2310157121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102539

RESUMO

The Amazon forest contains globally important carbon stocks, but in recent years, atmospheric measurements suggest that it has been releasing more carbon than it has absorbed because of deforestation and forest degradation. Accurately attributing the sources of carbon loss to forest degradation and natural disturbances remains a challenge because of the difficulty of classifying disturbances and simultaneously estimating carbon changes. We used a unique, randomized, repeated, very high-resolution airborne laser scanning survey to provide a direct, detailed, and high-resolution partitioning of aboveground carbon gains and losses in the Brazilian Arc of Deforestation. Our analysis revealed that disturbances directly attributed to human activity impacted 4.2% of the survey area while windthrows and other disturbances affected 2.7% and 14.7%, respectively. Extrapolating the lidar-based statistics to the study area (544,300 km2), we found that 24.1, 24.2, and 14.5 Tg C y-1 were lost through clearing, fires, and logging, respectively. The losses due to large windthrows (21.5 Tg C y-1) and other disturbances (50.3 Tg C y-1) were partially counterbalanced by forest growth (44.1 Tg C y-1). Our high-resolution estimates demonstrated a greater loss of carbon through forest degradation than through deforestation and a net loss of carbon of 90.5 ± 16.6 Tg C y-1 for the study region attributable to both anthropogenic and natural processes. This study highlights the role of forest degradation in the carbon balance for this critical region in the Earth system.


Assuntos
Carbono , Conservação dos Recursos Naturais , Florestas , Brasil/epidemiologia , Carbono/metabolismo , Humanos , Árvores/crescimento & desenvolvimento , Ciclo do Carbono
2.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162612

RESUMO

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Assuntos
Ciclo do Carbono , Carbono , Microbiota , Microbiologia do Solo , Solo , Chile , Carbono/metabolismo , Carbono/análise , Solo/química , Fungos/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , Pradaria
3.
Sci Total Environ ; 947: 174652, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992377

RESUMO

The ability of soil to sequester carbon and reduce atmospheric CO2 concentrations is limited and depends on the soil minerals and their interaction with the microbiota. Microbial activities are closely associated with the types and amounts of soil organic matter (SOM) and clay minerals that have functional groups that interact with energy in Vis NIR-SWIR and Mid-IR wavelengths. The main objective of this research was to determine, based on these spectral ranges, the relation between mineralogical and organic compounds, as their sequestration and specialization in soils from Brazil. It was possible to map microbiological activity by spectral transfer functions and digital soil mapping reaching R2 from 0.77 to 0.85. Multiple regression equations were constructed to quantify enzymatic activity, microbial biomass carbon (MBC), particulate organic matter (POM), and resistant forms of carbon, and SOM associated with the mineral fraction (MAOM). All these properties were detected by specific bands obtained with the recursive feature elimination (RFE) algorithm, reaching correlations from 0.64 to 0.98 in specific ranges. The prediction model of the carbon sequestration potential was adjusted with microbiological and mineralogical variables from Vis-NIR-SWIR and the Mid-IR spectral range. A SARAR double autoregressive model was adjusted with r 0.61 and to a spatial error model (SEM) with r 0.7. The explanatory variables were associated with kaolinite, hematite, goethite, gibbsite, and the abundance of fungi, actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic activity of beta-glucosidase, urease and phosphatase, and POM. Among the microbiological variables, the general abundance of fungi was the most important, in contrast to enzymatic activity that was the least important. The interaction between the different maps constructed and historical land use allowed the identification of areas that contribute to sequestering new carbon and could be the key to climate change mitigation strategies.


Assuntos
Sequestro de Carbono , Microbiologia do Solo , Solo , Solo/química , Minerais/análise , Brasil , Carbono/análise , Monitoramento Ambiental/métodos
4.
Environ Sci Pollut Res Int ; 31(35): 48650-48662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037628

RESUMO

The presence of pharmaceuticals in wastewater resulting from human activities has driven researchers to explore effective treatment methods such as adsorption using activated carbon (AC). While AC shows promise as an adsorbent, further studies are essential to comprehend its entire interaction with pharmaceuticals. This article investigates the adsorption of potassium diclofenac (PD) onto AC using experimental and modeling approaches. Batch adsorption studies coupled with Fourier transform infrared spectroscopy (FTIR) were employed to clarify the adsorption mechanism of PD on AC. Various kinetic and isotherm adsorption models were applied to analyze the adsorbent-adsorbate interaction. The kinetics were best described by Avrami's fractional order (AFO) nonlinear model. Also, the intraparticle diffusion (IP) model reveals a three-stage adsorption process. The experimental equilibrium data fitted well with the three-parameter nonlinear Liu model, indicating a maximum adsorption capacity (Qmax) of 88.45 mg g-1 and suggesting monolayer or multilayer adsorption. Thermodynamic analysis showed favorable adsorption (ΔG° < 0), with an enthalpy change (ΔH° = -30.85 kJ mol-1) characteristic of physisorption involving hydrogen bonds and π-π interactions. The adsorption mechanism was attributed to forming a double layer (adsorbate-adsorbent and adsorbate-adsorbate).


Assuntos
Carvão Vegetal , Diclofenaco , Poluentes Químicos da Água , Diclofenaco/química , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Carbono/química
5.
Environ Sci Pollut Res Int ; 31(31): 44374-44384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949732

RESUMO

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.


Assuntos
Nanoestruturas , Termodinâmica , Adsorção , Nanoestruturas/química , Analgésicos/química , Grafite/química , Poluentes Químicos da Água/química , Carbono/química
6.
Environ Sci Pollut Res Int ; 31(32): 44965-44982, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954345

RESUMO

Sulfate radical-based advanced oxidation processes (SR-AOPs) are renowned for their exceptional capacity to degrade refractory organic pollutants due to their wide applicability, cost-effectiveness, and swift mineralization and oxidation rates. The primary sources of radicals in AOPs are persulfate (PS) and peroxymonosulfate (PMS) ions, sparking significant interest in their mechanistic and catalytic aspects. To develop a novel nanocatalyst for SR-AOPs, particularly for PMS activation, we synthesized carbon-coated FeCo nanoparticles (NPs) using solvothermal methods based on the polyol approach. Various synthesis conditions were investigated, and the NPs were thoroughly characterized regarding their structure, morphology, magnetic properties, and catalytic efficiency. The FeCo phase was primarily obtained at [OH-] / [Metal] = 26 and [Fe] / [Co] = 2 ratios. Moreover, as the [Fe]/[Co] ratio increased, the degree of xylose carbonization to form a carbon coating (hydrochar) on the NPs also increased. The NPs exhibited a spherical morphology with agglomerates of varying sizes. Vibrating-sample magnetometer analysis (VSM) indicated that a higher proportion of iron resulted in NPs with higher saturation magnetization (up to 167.8 emu g-1), attributed to a larger proportion of FeCo bcc phase in the nanocomposite. The best catalytic conditions for degrading 100 ppm Rhodamine B (RhB) included 0.05 g L-1 of NPs, 2 mM PMS, pH 7.0, and a 20-min reaction at 25 °C. Notably, singlet oxygen was the predominant specie formed in the experiments in the SR-AOP, followed by sulfate and hydroxyl radicals. The catalyst could be reused for up to five cycles, retaining over 98% RhB degradation, albeit with increased metal leaching. Even in the first use, dissolved Fe and Co concentrations were 0.8 ± 0.3 and 4.0 ± 0.5 mg L-1, respectively. The FeCo catalyst proved to be effective in dye degradation and offers the potential for further refinement to minimize Co2+ leaching.


Assuntos
Nanocompostos , Peróxidos , Nanocompostos/química , Peróxidos/química , Poluentes Químicos da Água/química , Catálise , Oxirredução , Ferro/química , Carbono/química
7.
J Environ Manage ; 366: 121915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39033627

RESUMO

Phosphorus is a limiting element for the productivity of mangroves, which in turn are important ecosystems in regulating nutrients cycle and climate change by sequestering carbon (C). Despite this, there is an intense process of degradation in these environments. In addition to providing socio-environmental services, mangrove replanting can also alter the dynamics of nutrients in soils. Therefore, this study aims to understand the changes in soil phosphorus (P) fractions after a mangrove restoration. Soil samples from an unvegetated area (NV), a mature mangrove (R) and 7 and 9 year old replanted mangroves at SE-Brazil (APA Guapi-mirim, Rio de Janeiro state) were collected and analyzed to characterize the redox conditions (Eh), pH, and iron (Fe) fractionation, Total Organic Carbon (TOC) contents and P fractionation (exchangeable P; P associated with reducible Fe and Mn oxyhydroxides; associated with Al silicates and hydroxides; associated with humic acids; associated with Ca and Mg; associated with humin). The results indicate an increase in TOC as the age of the mangrove restoration increases (from 8.6 to 17.9%). The pH values were significantly lower, reaching very acidic values, associated with an increase in Eh. Both parameters also showed strong seasonal variation, with a drop in Eh during the wet period (from 165% to -46%) and an increase in pH in the same period (from 6.0 to 6.7). Regarding P fractionation, the main P pool was organic P forms, which showed the highest concentrations in all studied sites. Unvegetated areas showed higher organic P forms (NV: 108.8 µg g-1) than vegetated areas (M7: 55.7 µg g-1, M9: 83.6 µg g-1, R: 87.3 µg g-1). Vegetated sites also showed lower levels of the PEx, PFeMn and Papatite fractions (total forest mean: 2.4 µg g-1, 5.8 µg g-1, 3.0 µg g-1, respectively). Besides no clear trend on P fractionation through seasons and forest age, pseudo-total P increased following the forest recovery (e.g. M7

Assuntos
Fósforo , Solo , Áreas Alagadas , Fósforo/análise , Solo/química , Carbono , Ecossistema
8.
Arch Microbiol ; 206(7): 310, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896324

RESUMO

The RNA-Seq profiling of Herbaspirillum seropedicae SmR1 wild-type and ntrC mutant was performed under aerobic and three nitrogen conditions (ammonium limitation, ammonium shock, and nitrate shock) to identify the major metabolic pathways modulated by these nitrogen sources and those dependent on NtrC. Under ammonium limitation, H. seropedicae scavenges nitrogen compounds by activating transporter systems and metabolic pathways to utilize different nitrogen sources and by increasing proteolysis, along with genes involved in carbon storage, cell protection, and redox balance, while downregulating those involved in energy metabolism and protein synthesis. Growth on nitrate depends on the narKnirBDHsero_2899nasA operon responding to nitrate and NtrC. Ammonium shock resulted in a higher number of genes differently expressed when compared to nitrate. Our results showed that NtrC activates a network of transcriptional regulators to prepare the cell for nitrogen starvation, and also synchronizes nitrogen metabolism with carbon and redox balance pathways.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Herbaspirillum , Nitratos , Nitrogênio , Herbaspirillum/metabolismo , Herbaspirillum/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Compostos de Amônio/metabolismo , Adaptação Fisiológica , Redes e Vias Metabólicas/genética , Carbono/metabolismo
9.
Talanta ; 277: 126391, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861764

RESUMO

An edible Mushroom-Nafion modified glassy carbon electrode (M2N5-GCE) was prepared using a homogeneous mixture varying the concentrations of these, in addition to the origin of the mushroom (Shiitake, Lentinula edodes, M1 and Abrantes, Agariscus bisporus, M2) and applied to the As(III) determination by anodic stripping voltammetry. After choosing the optimal conditions in the preparation of the electrode, the second stage was to study the effects of various parameters such as supporting electrolyte, pH, accumulation potential, and time (Eacc, tacc). The optimum experimental conditions chosen were Britton Robinson buffer 0.01 mol L-1 pH:4.6; Eacc: -1.0 and tacc: 60 s obtaining a signal of oxidation of As(0) to As(III) about 0.08 V. Peak current was proportional to arsenic concentration over the 19.6-117.6 µg L-1 range, with a 3σ detection limit of 13.4 µg L-1. The method was validated using As(III) spiked tap water from the laboratory with satisfactory results (RE:3.0 %). Finally, the method was applied to the determination of As(III) in water samples from the Loa River (Northern Chile) in the presence of As(V) in a concentration >20 times higher (RE: 2.3 %).


Assuntos
Agaricales , Arsênio , Carbono , Eletrodos , Polímeros de Fluorcarboneto , Polímeros de Fluorcarboneto/química , Carbono/química , Arsênio/análise , Arsênio/química , Agaricales/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Eletroquímica
10.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931556

RESUMO

This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 µg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.


Assuntos
Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Ouro , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Ouro/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Imunoensaio/métodos , Imunoensaio/instrumentação , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Carbono/química , Fosfoproteínas/análise
11.
Planta ; 260(1): 31, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888604

RESUMO

Deforestation of Atlantic Forest has caused prolonged drought events in the last decades. The need for reforestation is growing, and the development of native seedlings that are more tolerant to drought stress is necessary. A biotechnological tool that improves plant tolerance is the use of plant growth-promoting bacteria (PGPB) as inoculants. Two species of PGPB were inoculated in drought-stressed seedlings of two neotropical tree species that have been used in environmental restoration programs: Cecropia pachystachya and Cariniana estrellensis. Biometrical, physiological, and metabolomic parameters from carbon and nitrogen pathways were evaluated. We found that the PGPB positively influenced photosynthesis and growth parameters in both trees under drought. The enzymes activities, the tricarboxylic acid cycle intermediates, the amino acids, and protein contents were also influenced by the PGPB treatments. The results allowed us to find the specific composition of secondary metabolites of each plant species. This study provides evidence that there is not a single mechanism involved in drought tolerance and that the inoculation with PGPB promotes a broad-spectrum tolerance response in Neotropical trees. The inoculation with PGPB appears as an important strategy to improve drought tolerance in Atlantic Forest native trees and enhance environmental restoration programs' success. MAIN CONCLUSION: The association with plant growth-promoting bacteria improved the tolerance to drought in Neotropical trees through biochemical, physiological, and biometrical parameters. This can enhance the success of forest restoration programs.


Assuntos
Carbono , Secas , Metabolômica , Nitrogênio , Folhas de Planta , Árvores , Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Árvores/microbiologia , Árvores/metabolismo , Árvores/fisiologia , Cecropia/metabolismo , Cecropia/fisiologia , Fotossíntese , Estresse Fisiológico , Bactérias/metabolismo , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/metabolismo
12.
Mar Environ Res ; 199: 106564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851080

RESUMO

Carbon export efficiency is a key indicator of the capacity of biological pump, but the controlling mechanism of the efficiency remains unclear. Our findings revealed that interannual variations in seasonal carbon export efficiency are determined by direct factors including riverine nutrient fluxes, stratification, residence time. These direct factors are finally attributed to two indirect factors (human activities and climate change). We quantified the absolute contributions of direct and indirect factors to carbon export efficiency. The results showed that the carbon export efficiency in the northern Gulf of Mexico in spring (summer; autumn; winter) was driven by human activities, which accounted for an absolute contribution of 16.02% (7.20%; 4.00%; 8.49%, respectively) through riverine nutrient fluxes, and by climate change, which accounted for an absolute contribution of 33.51% (21.43%; 25.73%; 15.80%, respectively) through stratification and water residence time. Moreover, carbon export efficiency could be predicted by MEI of 8 months earlier.


Assuntos
Carbono , Mudança Climática , Estações do Ano , Golfo do México , Carbono/metabolismo , Monitoramento Ambiental , Ciclo do Carbono , Água do Mar/química
13.
Bioresour Technol ; 406: 130961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876281

RESUMO

This study investigates the potential of humic substances (HS) and graphene oxide (GO), as extracellular electron acceptors (EEA) for nitrification, aiming to explore alternatives to sustain this process in wastewater treatment systems. Experimental results demonstrate the conversion of ammonium to nitrate (up to 87 % of conversion) coupled to the reduction of either HS or GO by anaerobic consortia. Electron balance confirmed the contribution of HS and GO to ammonium oxidation. Tracer analysis in incubations performed with 15NH4+ demonstrated 15NO3- as the main product with a minor fraction ending as 29N2. Phylogenetic analysis identified Firmicutes, Euryarchaeota, and Chloroflexi as the microbial lineages potentially involved in anoxic nitrification linked to HS reduction. This study introduces a new avenue for research in which carbon-based materials with electron-accepting capacity may support the anoxic oxidation of ammonium, for instance in bioelectrochemical systems in which carbon-based anodes could support this novel process.


Assuntos
Carbono , Nitrificação , Carbono/química , Elétrons , Grafite/química , Filogenia , Oxirredução , Compostos de Amônio/metabolismo , Anaerobiose , Nitratos/metabolismo , Bactérias/metabolismo
14.
Sci Total Environ ; 945: 174156, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909803

RESUMO

Tropical forests are global biodiversity hotspots and are crucial in the global carbon (C) cycle. Understanding the drivers of aboveground carbon stock (AGC) in a heterogeneous and biodiverse system can shed light on the processes underlying the relationship between biodiversity and carbon accumulation. Here, we investigate how biodiversity, environment, and landscape structure affect AGC. We examined such associations in 349 plots comprising over 95,346 km2 the Atlantic Forest of southern Brazil, encompassing three forest types: Dense Ombrophylous Forest (DF), Mixed Ombrophylous Forest (MF), and Seasonal Deciduous Forest (SF). Each plot was described by environmental variables, landscape metrics, and biodiversity (species richness and functional diversity). We used diversity, environmental, and landscape variables to build generalized linear mixed models and understand which can affect the forest AGC. We found that species richness is associated positively with AGC in all forest types, combined and separately. Seasonal temperature and isothermality affect AGC in all forest types; additionally, stocks are positively influenced by annual precipitation in SF and isothermality in MF. Among landscape metrics, total fragment edge negatively affects carbon stocks in MF. Our results show the importance of species diversity for carbon stocks in subtropical forests. The climate effect was also relevant, showing the importance of these factors, especially in a world where climate change tends to affect forest stock capacity negatively.


Assuntos
Biodiversidade , Carbono , Florestas , Brasil , Carbono/análise , Mudança Climática , Clima Tropical , Ciclo do Carbono , Árvores
15.
BMC Microbiol ; 24(1): 228, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943070

RESUMO

BACKGROUND: Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS: Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION: The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.


Assuntos
Bactérias , Microbiota , Áreas Alagadas , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Filogenia , Processos Heterotróficos , Ciclo do Carbono , Carbono/metabolismo , Metano/metabolismo , Processos Autotróficos , Redes e Vias Metabólicas/genética
16.
J Environ Manage ; 363: 121329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852420

RESUMO

Microalgae-mediated industrial flue gas biofixation has been widely discussed as a clean alternative for greenhouse gas mitigation. Through photosynthetic processes, microalgae can fix carbon dioxide (CO2) and other compounds and can also be exploited to obtain high value-added products in a circular economy. One of the major limitations of this bioprocess is the high concentrations of CO2, sulfur oxides (SOx), and nitrogen oxides (NOx) in flue gases, according to the origin of the fuel, that can inhibit photosynthesis and reduce the process efficiency. To overcome these limitations, researchers have recently developed new technologies and enhanced process configurations, thereby increased productivity and CO2 removal rates. Overall, CO2 biofixation rates from flue gases by microalgae ranged from 72 mg L-1 d -1 to over 435 mg L-1 d-1, which were directly influenced by different factors, mainly the microalgae species and photobioreactor. Additionally, mixotrophic culture have shown potential in improving microalgae productivity. Progress in developing new reactor configurations, with pilot-scale implementations was observed, resulting in an increase in patents related to the subject and in the implementation of companies using combustion gases in microalgae culture. Advancements in microalgae-based green technologies for environmental impact mitigation have led to more efficient biotechnological processes and opened large-scale possibilities.


Assuntos
Dióxido de Carbono , Microalgas , Microalgas/metabolismo , Dióxido de Carbono/química , Gases , Gases de Efeito Estufa , Carbono/química , Fotossíntese
17.
Appl Environ Microbiol ; 90(6): e0044624, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38709099

RESUMO

The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE: The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.


Assuntos
Bactérias , Ciclo do Carbono , Sedimentos Geológicos , Processos Heterotróficos , Microbiota , Análise de Célula Única , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/classificação , México , Água do Mar/microbiologia , Água do Mar/química , Carbono/metabolismo
18.
An Acad Bras Cienc ; 96(2): e20230999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775554

RESUMO

Soil organic matter is closely linked to the quality of Agroecosystems and directly influences the agricultural production and the environmental conditions. Understanding of soil organic matter dynamics in agroforestry systems requires studies with a temporal focus, since the changes in its chemical composition tend to follow a gradual behavior. The aim of this study was to investigate the dynamics of changes in stocks and chemical composition of soil organic matter under agroforestry, using systems in different stages of vegetation succession. The soil sampling was carried out from trenches, and litter fractions were also sampled. The samples were collected from different layers of the soil profile under the following conditions: Control; agroforestry with 1 year; agroforestry with 3 years; agroforestry with 7 years and Forest in natural regeneration. The following attributes/parameters were determined/calculated: i) C and N contents and stocks and C/N ratio; ii) C and N proportions in soil granulometric fractions and iii) kinetics of organic matter accumulation in soil with the time of systems evolution. The results showed: i) The C/N ratio tended to increase in depth but did not show a clear variation between the systems evaluated; ii) the adoption of successive agroforestry practices has the potential to increase the C and N stocks in soil; iii) the soil organic matter accumulation occurs gradually during the systems evolution and is mainly related to the particulate fraction (> 0.053 mm).


Assuntos
Agricultura , Carbono , Agricultura Florestal , Nitrogênio , Solo , Solo/química , Brasil , Agricultura/métodos , Carbono/análise , Nitrogênio/análise
19.
PLoS One ; 19(5): e0302680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753896

RESUMO

Scalesia pendunculata Hook.f. is the dominant tree in several highlands' areas of the Galapagos Archipelago, yet in inhabited islands the conversion to agricultural fields has reduced its cover. The transition to agroforestry systems including the species shows promising scenarios to restore its cover and to provide ecosystem services such as carbon sequestration. Here, based on field gathered data, we model the potential contribution of S. pedunculata stands in the carbon sequestration of Galapagos. Between 2013-2021, 426 S. pedunculata seedlings were planted in the highlands of Santa Cruz and Floreana islands using several restoration technologies, and their height and survival were monitored every three months. A sub-sample of 276 trees alive since 2020 was used to estimate the DBH based on plant age and height. Based on scientific literature, biomass and carbon content were estimated across time. The final modelling included the density of plants in the restoration sites, estimated DBH, potential survival by restoration treatment, and a Brownian noise to add stochastic events. Overall, survival of S. pedunculata was high in control and slightly increased by most restoration treatments. A stand of 530 trees/ha was projected to sequester ~21 Mg C/ha in 10 years. If this is replicated over all Galapagos coffee production would contribute to the reduction of -1.062% of the Galapagos carbon footprint for the same period. This study adds to compiling benefits of restoring Galapagos flora.


Assuntos
Agricultura , Sequestro de Carbono , Agricultura/métodos , Equador , Ecossistema , Carbono/metabolismo , Árvores/crescimento & desenvolvimento , Biomassa , Conservação dos Recursos Naturais/métodos
20.
Sci Rep ; 14(1): 10007, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693157

RESUMO

Brazil's Atlantic Forest (BAF) is a highly fragmented, strategic environmental and socio-economic region that represents the fourth biodiversity hotspot while also producing many commodities that are exported globally. Human disturbance plays a pivotal role as a driver of BAF's soil dynamics and behaviors. The soils under Late Primary and Secondary Semideciduous Seasonal Forests (LPSF and LSSF) were characterized by high to moderate resilience, with improved chemical properties as human disturbance decreased. The Transitional Forest to Cerrado (TFC) had the worst soil conditions. Disturbed Primary and Secondary Semideciduous Seasonal Forests (DPSF and DSSF) represent a transitional stage between LPSF/LSSF and TFC. Accordingly, SOCs stocks increased from TFC << DPSF, DSSF < LPSF, LSSF. In BAF soils, to avoid unreliable data, SOCs measurements should be (i) conducted to at least 1 m soil depth and (ii) quantified with a CHN analyzer. Human disturbance strongly affected the positive feedback between vegetation succession, SOCs, and soil nutrition. Soil development decreased as human disturbance increased, thus negatively affecting SOCs. Soils in the BAF require a long time to recover after the end of human disturbance, thus suggesting that preservation strategies should be prioritized in remnant BAF fragments.


Assuntos
Carbono , Florestas , Solo , Brasil , Solo/química , Carbono/análise , Biodiversidade , Humanos , Estações do Ano , Ecossistema , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA