Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.762
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(11): e9738, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572671

RESUMO

RATIONALE: Accurate identification of old rice samples from new ones benefits their market circulation and consumers. However, the current detection methods are still not satisfactory because of their insufficient accuracy or (and) time-consuming process. METHODS: Chelating carboxylic acids (CCAs) were selectively extracted from rice, by stirring with chelating resin and a dilute Na2CO3 solution. The green analytical chemistry guidelines for sample preparation were investigated by using the green chemistry calculator AGREE prep. The extractant was determined by liquid chromatography-mass spectrometry (LC/MS), and statistical analysis of the analytical data was carried out to evaluate the significance of the difference by ChiPlot. RESULTS: The limit of quantitation for the CCAs is in the range of 1 to 50 ng/mL, with a reasonable reproducibility. The CCAs in 23 rice samples were determined within a wide concentration range from 0.03 to 1174 µg/g. Intriguingly, the content of citric acid, malonic acid, α-ketoglutaric acid and cis-aconite acid in new rice was each found to be distinctively higher than that in old rice by several times. Even mixtures of old and new rice were found to show much difference in the concentration of citric acid and malic acid. CONCLUSION: A green analytical method has been developed for the simultaneous determination of CCAs by LC/MS analysis, and the identification of old rice samples from new ones was easily carried out according to their CCA content for the first time. The results indicated that the described method has powerful potential for the accurate identification of old rice samples from new ones.


Assuntos
Oryza , Cromatografia Líquida/métodos , Ácidos Carboxílicos , Oryza/química , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Ácido Cítrico , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida
2.
Nat Commun ; 15(1): 1969, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443434

RESUMO

Natural fruits contain a large variety of cis-diols. However, due to the lack of a high-resolution sensor that can simultaneously identify all cis-diols without a need of complex sample pretreatment, direct and rapid analysis of fruits in a hand-held device has never been previously reported. Nanopore, a versatile single molecule sensor, can be specially engineered to perform this task. A hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore modified with a sole phenylboronic acid (PBA) adapter is prepared. This engineered MspA accurately recognizes 1,2-diphenols, alditols, α-hydroxy acids and saccharides in prune, grape, lemon, different varieties of kiwifruits and commercial juice products. Assisted with a custom machine learning program, an accuracy of 99.3% is reported and the sample pretreatment is significantly simplified. Enantiomers such as DL-malic acids can also be directly identified, enabling sensing of synthetic food additives. Though demonstrated with fruits, these results suggest wide applications of nanopore in food and drug administration uses.


Assuntos
Citrus , Nanoporos , Estados Unidos , Frutas , Álcoois Açúcares , Ácidos Carboxílicos , Mycobacterium smegmatis , Porinas
3.
Org Biomol Chem ; 22(13): 2643-2653, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38456317

RESUMO

Thienylallylamines, readily accessible from the corresponding thienyl aldehydes, react with maleic and trifluoromethylmaleic anhydrides leading to the formation of acids with a thieno[2,3-f]isoindole core. The reaction sequence involves two successive steps: acylation of the nitrogen atom of the initial allylamine and the intramolecular Diels-Alder vinylarene (IMDAV) reaction. The scope and limitations of the proposed method were thoroughly investigated. It has been revealed with the aid of X-ray analysis and DFT calculations that the key step, the IMDAV reaction, proceeds through an exo-transition state, giving rise to the exclusive formation of a single diastereomer of the target heterocycle. The obtained functionally substituted thieno[2,3-f]isoindole carboxylic acids are potentially useful substrates for further transformations and bioscreening. The antimicrobial evaluation of the obtained compounds revealed that 1-oxo-2-(3-(trifluoromethyl)phenyl)hexahydrobenzo[4,5]thieno[2,3-f]isoindole-10-carboxylic acid is the most active sample in the synthesized library. It exhibits antibacterial activity against sensitive strains of Gram-positive bacteria, including S. aureus, Enterococcus faecium, Bacillus cereus, and Micrococcus luteus, as well as the Gram-negative bacteria E. coli and Pseudomonas fluorescens, with MIC values ranging from 4 to 64 µg mL-1. 9-Oxo-8-phenyloctahydronaphtho[2,1-d]thieno[2,3-f]isoindole-10-carboxylic acid showed antifungal activity against yeast culture C. albicans with a MIC value of 32 µM.


Assuntos
Escherichia coli , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Antibacterianos/química , Ácidos Carboxílicos , Isoindóis
4.
Waste Manag ; 179: 175-181, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479256

RESUMO

Bio-based products are a fast-growing market due to increasing consumer consciousness for sustainability. Although this is per se a positive trend, it leads to a higher demand for organic feedstocks which normally comes from primary agricultural sources and can lead to undesired deforestation or other land use changes to farmland. At the same time, Europe is facing another challenge related with the treatment of organic wastes. In this context, the project CAFIPLA developed an integrated process to convert heterogeneous organic materials to building blocks for the bio-based economy. This study performs a life cycle sustainability assessment (life cycle assessment, life cycle costing and social life cycle assessment) of the production of short chain carboxylic acids (SCCA) employing municipal bio-wastes as a feedstock. In addition to a hot-spot identification to detect the main sources of impact, a comparison of the novel technology with the current benchmark is carried out applying a cradle-to-gate approach and using 1 kg of SCCA as a functional unit. Results show the great performance of CAFIPLA in all the environmental categories analysed. Furthermore, the profitability of the plant is also verified, reaching a payback period below 6 years as long as the product is sold above 0.49 €/kg. Finally, the potential social risk associated to the supply chain is also improved with CAFIPLA technology.


Assuntos
Agricultura , Ácidos Carboxílicos , Animais , Europa (Continente) , Fazendas , Estágios do Ciclo de Vida
5.
Environ Pollut ; 347: 123721, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462192

RESUMO

Perfluoroalkyl ether carboxylic acids (PFECA) have emerged as novel alternatives to legacy per- and polyfluoroalkyl substances (PFAS). Existing research has revealed hepatoxicity induced by various PFAS, including PFECA. However, these studies have primarily focused on overall changes in whole liver tissue, particularly in hepatocytes, with the impact of PFAS on diverse liver non-parenchymal cells (NPCs) still inadequately understood. In the present study, we examined the heterogeneous responses of hepatic NPCs following exposure to perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA), a type of PFECA, by administering PFO5DoDA (5 µg/L)-contaminated water to male mice for one year. Single-cell RNA sequencing (scRNA-seq) of 15 008 cells from the liver identified 10 distinct NPC populations. Notably, although relative liver weight remained largely unchanged following exposure to 5 µg/L PFO5DoDA, there was an observed increase in proliferating cells, indicating that proliferating NPCs may contribute to the hepatomegaly frequently noted in PFAS-exposed livers. There was also a considerable alteration in the composition of hepatic NPCs. Specifically, the total number of B cells decreased substantially, while many other cells, such as monocytes and macrophages, increased after PFO5DoDA exposure. In addition, interactions among the hepatic NPC populations changed variously after PFO5DoDA exposure. The findings emphasize the heterogeneity in the responses of hepatic NPCs to PFO5DoDA exposure. Taken together, the changes in immune cell populations and their intercellular interactions suggest that PFO5DoDA disrupts immune homeostasis in the liver. These findings offer new insights into the cellular mechanisms of PFAS-induced liver damage.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Camundongos , Masculino , Animais , Hepatócitos , Fígado , Fluorocarbonos/toxicidade , Éteres , Ácidos Carboxílicos , Etil-Éteres , Análise de Sequência de RNA
6.
Water Res ; 254: 121431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471201

RESUMO

Fluorotelomer carboxylic acids (FTCAs) represent an important group of per- and polyfluoroalkyl substances (PFAS) given their high toxicity, bioaccumulation potential, and frequent detection in landfill leachates and PFAS-impacted sites. In this study, we assessed the biodegradability of 6:2 FTCA and 5:3 FTCA by activated sludges from four municipal wastewater treatment plants (WWTPs) in the New York Metropolitan area. Coupling with 6:2 FTCA removal, significant fluoride release (0.56∼1.83 F-/molecule) was evident in sludge treatments during 7 days of incubation. Less-fluorinated transformation products (TPs) were formed, including 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorobutanoic acid (PFBA). In contrast, little fluoride (0.01∼0.09 F-/molecule) was detected in 5:3 FTCA-dosed microcosms, though 25∼68% of initially dosed 5:3 FTCA was biologically removed. This implies the dominance of "non-fluoride-releasing pathways" that may contribute to the formation of CoA adducts or other conjugates over 5:3 FTCA biotransformation. The discovery of defluorinated 5:3 FTUCA revealed the possibility of microbial attacks of the C-F bond at the γ carbon to initiate the transformation. Microbial community analysis revealed the possible involvement of 9 genera, such as Hyphomicrobium and Dechloromonas, in aerobic FTCA biotransformation. This study unraveled that biotransformation pathways of 6:2 and 5:3 FTCAs can be divergent, resulting in biodefluorination at distinctive degrees. Further research is underscored to uncover the nontarget TPs and investigate the involved biotransformation and biodefluorination mechanisms and molecular basis.


Assuntos
Fluorocarbonos , Esgotos , Ácidos Carboxílicos , Fluoretos , Fluorocarbonos/química , Biotransformação
7.
ACS Appl Mater Interfaces ; 16(12): 14573-14582, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484043

RESUMO

Pseudomonas aeruginosa biofilms comprise three main polysaccharides: alginate, psl, and pel, which all imbue tolerance against exogenous antimicrobials. Nanoparticles (NPs) are an exciting new strategy to overcome the biofilm matrix for therapeutic delivery applications; however, zero existing FDA approvals for biofilm-specific NP formulations can be attributed to the complex interplay of physiochemical forces at the biofilm-NP interface. Here, we leverage a set of inducible, polysaccharide-specific, expressing isogenic P. aeruginosa mutants coupled with an assembled layer-by-layer NP (LbL NP) panel to characterize biofilm-NP interactions. When investigating these interactions using confocal microscopy, alginate-layered NPs associated more than dextran-sulfate-layered NPs with biofilms that had increased alginate production, including biofilms produced by mucoid P. aeruginosa isolates from people with cystic fibrosis. These differences were further confirmed in LbL NPs layered with polysaccharide- or hydrocarbon-based polymers with pendent carboxylate or sulfate functional groups. These data suggest carboxylated NP surfaces have enhanced interactions specifically with mucoid biofilms as compared to sulfated surfaces and lay the foundation for their inclusion as a design element for increasing biofilm-NP interactions and efficacious drug delivery.


Assuntos
Nanopartículas , Pseudomonas aeruginosa , Humanos , Polissacarídeos Bacterianos , Biofilmes , Ácidos Carboxílicos , Alginatos , Sulfatos
8.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38528735

RESUMO

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Poluentes Químicos da Água , Éter , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Éteres , Alcanossulfonatos , Etil-Éteres , Digestão , Estresse Oxidativo
9.
Pol J Microbiol ; 73(1): 107-120, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437466

RESUMO

Hydrocarbon constituents of petroleum are persistent, bioaccumulated, and bio-magnified in living tissues, transported to longer distances, and exert hazardous effects on human health and the ecosystem. Bioaugmentation with microorganisms like bacteria is an emerging approach that can mitigate the toxins from environmental sources. The present study was initiated to target the petroleum-contaminated soil of gasoline stations situated in Lahore. Petroleum degrading bacteria were isolated by serial dilution method followed by growth analysis, biochemical and molecular characterization, removal efficiency estimation, metabolites extraction, and GC-MS of the metabolites. Molecular analysis identified the bacterium as Bacillus cereus, which exhibited maximum growth at 72 hours and removed 75% petroleum. Biochemical characterization via the Remel RapID™ ONE panel system showed positive results for arginine dehydrolase (ADH), ornithine decarboxylase (ODC), lysine decarboxylase (LDC), o-nitrophenyl-ß-D-galactosidase (ONPG), p-nitrophenyl-ß-D-glucosidase (ßGLU), p-nitrophenyl-N-acetyl-ß-D-glucosaminidase (NAG), malonate (MAL), adonitol fermentation (ADON), and tryptophane utilization (IND). GC-MS-based metabolic profiling identified alcohols (methyl alcohol, o-, p- and m-cresols, catechol, and 3-methyl catechol), aldehydes (methanone, acetaldehyde, and m-tolualdehyde), carboxylic acid (methanoic acid, cis,cis-muconic acid, cyclohexane carboxylic acid and benzoic acid), conjugate bases of carboxylic acids (benzoate, cis,cis-muconate, 4-hydroxybenzoate, and pyruvate) and cycloalkane (cyclohexene). It suggested the presence of methane, methylcyclohexane, toluene, xylene, and benzene degradation pathways in B. cereus.


Assuntos
Bacillus cereus , Ecossistema , Humanos , Bacillus cereus/genética , Hidrocarbonetos , Metano , Ácidos Carboxílicos
10.
J Mater Chem B ; 12(11): 2746-2760, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38379378

RESUMO

Maintaining the freshness of food is essential for a healthy and quality life. Nevertheless, it remains a global challenge. Hence, an easy detection and monitoring protocol would be highly desirable. A cyanoacrylic acid (CAA)-based fluorophore is manifested as a reusable platform that responds diversely against different concentrations of selective aliphatic biogenic amines (BAs) in both solution and vapor phases. Slow spoilage of the protein-rich food is progressively monitored through emission shifts visible to the naked eye. This fluorophore provides easy and naked-eye detection of the BA vapor through a change in emission, i.e., red → orange → orange-yellow → cyan → green and quantum yield enhancement, which occur in stepwise increments of vapor concentrations. The probe design includes π-conjugated functionalized fluorescent molecules linked to multiple twisting sites, resulting in both solid and solution-state emission. The attached carboxylic acid responds quickly with selective BAs, mainly putrescine (PUT), cadaverine (CAD), and spermidine (SPM), where the concentration-based emission variation has appeared to be distinct and prominent against PUT [sensitivity (µM): 2 (solution); 3.3 (vapour)]. The selectivity towards diamine can be clarified by the formation of carboxylic acid salts and the consequent proton exchanges between free and protonated amines. In addition, -CN···H interaction is likely to develop within this ammonium carboxylate system, providing extra stability. Such ammonium carboxylate salt formation and gradual change in the molecular arrangement, resulting in symmetry development, are validated by FT-IR and wide-angle X-ray diffraction studies. Besides, this fact is supported by DFT studies that validate intramolecular H-atom exchange between free amine and ammonium salt units. A fluorophore-coated coverslip, filter paper, or silica gel-coated Al-plate is fruitfully utilized to detect the freshness of fish and chicken, which reveals the potential of this probe to prevent food waste and control food safety.


Assuntos
Compostos de Amônio , Eliminação de Resíduos , Animais , Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier , Aminas Biogênicas , Putrescina , Proteínas , Gases , Ácidos Carboxílicos
11.
Chemosphere ; 352: 141446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354866

RESUMO

Heterogeneous photocatalytic degradation of antibiotic involves the activation of antibiotic molecules and the photocatalytic oxidation process. However, the simultaneous improvement of these processes is still a challenge. Herein, S-scheme heterojunctions consisted of Cu2O nanocluster with defective WO3 nanosheets were constructed for efficient photocatalytic degradation of levofloxacin (LVX). The typical CNS-5 composite (5 wt% Cu2O/WO3) achieves an optimal LVX degradation efficiency of 97.9% within 80 min. The spatial charge separation and enhancement of redox capacity were realized by the formation of S-scheme heterojunction between Cu2O and WO3. Moreover, their interfacial interaction would lead to the loss of lattice oxygen and the generation of W5+ sites. It is witnessed that the C-N of piperazine ring and CO of carboxylic acid in LVX are coordinated with W5+ sites to build the electronic bridge to activate LVX, greatly promoting the further degradation. This work highlights the important role of selective coordination activation cooperated with S-type heterojunctions for the photocatalytic degradation and offers a new view to understand the degradation of antibiotics at molecular level.


Assuntos
Antibacterianos , Levofloxacino , Ácidos Carboxílicos , Eletrônica , Oxigênio
12.
ChemMedChem ; 19(5): e202300623, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303683

RESUMO

It is of great importance to pinpoint specific residues or sites of a protein in biological contexts to enable desired mechanism of action for small molecules or to precisely control protein function. In this regard, acidic residues including aspartic acid (Asp) and glutamic acid (Glu) hold great potential due to their great prevalence and unique function. To unlock the largely untapped potential, great efforts have been made recently by synthetic chemists, chemical biologists and pharmacologists. Herein, we would like to highlight the remarkable progress and particularly introduce the electrophiles that exhibit reactivity to carboxylic acids, the light-induced reactivities to carboxylic acids and the genetically encoded noncanonical amino acids that allow protein manipulations at acidic residues. We also comment on certain unresolved challenges, hoping to draw more attention to this rapidly developing area.


Assuntos
Aminoácidos , Ácido Glutâmico , Ácido Aspártico , Ácidos Carboxílicos
13.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338334

RESUMO

Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'ß-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.


Assuntos
Bacillus , Bacillus/metabolismo , Pseudomonas/metabolismo , Fenazinas/farmacologia , Fenazinas/química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/metabolismo
14.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415988

RESUMO

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Assuntos
Aztreonam , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , Ceftazidima , Aztreonam/farmacologia , Meropeném/farmacologia , Cefepima/farmacologia , Proteínas de Ligação às Penicilinas , Escherichia coli , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Combinação de Medicamentos , Imipenem/farmacologia , Imipenem/química , Testes de Sensibilidade Microbiana
15.
J Nat Prod ; 87(3): 520-529, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38410947

RESUMO

The phytochemical study of the Pisolithus arhizus fruiting body methanol extract led to the isolation of six new triterpenoids (1-6) and one new naphthalenoid pulvinic acid derivative (7), together with five known compounds, including norbadione A (8). Their structure was established from 1D and 2D NMR spectroscopy and HRESIMS analyses. The absolute configuration of the triterpenoids was determined by circular dichroism. The two pulvinic acid derivatives 7 and 8, showing the highest activity in modulating IL-6 secretion, were tested for their effect on COX-2, STAT3, and p-STAT3 proteins; both compounds were able to downregulate p-STAT3.


Assuntos
Anti-Inflamatórios , Basidiomycota , Ácidos Carboxílicos , Lactonas , Triterpenos , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Triterpenos/farmacologia , Triterpenos/química , Extratos Vegetais/farmacologia
16.
Environ Sci Technol ; 58(7): 3322-3331, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38324703

RESUMO

Ozonolysis of alkenes is known to produce reactive intermediates─stabilized Criegee intermediates (SCIs), and their subsequent bimolecular reactions with various carboxylic acids can form α-acyloxyalkyl hydroperoxides (AAHPs), which is considered a major class of organic peroxides in secondary organic aerosol (SOA). Despite their atmospheric and health importance, the molecular-level identification of organic peroxides in atmospheric aerosols is highly challenging, preventing further assessment of their environmental fate. Here, we synthesize 20 atmospherically relevant AAHPs through liquid-phase ozonolysis, in which two types of monoterpene-derived SCIs from either α-pinene or 3-carene are scavenged by 10 different carboxylic acids to form AAHPs with diverse structures. These AAHPs are identified individually by liquid chromatography coupled with high-resolution mass spectrometry. AAHPs were previously thought to decompose quickly in an aqueous environment such as cloud droplets, but we demonstrate here that AAHPs hydrolysis rates are highly compound-dependent with rate constants differing by 2 orders of magnitude. In contrast, the aqueous-phase formation rate constants between SCI and various carboxylic acids vary only within a factor of 2-3. Finally, we identified two of the 20 synthesized AAHPs in α-pinene SOA and two in 3-carene SOA, contributing ∼0.3% to the total SOA mass. Our results improve the current molecular-level understanding of organic peroxides and are useful for a more accurate assessment of their environmental fate and health impact.


Assuntos
Poluentes Atmosféricos , Monoterpenos Bicíclicos , Ozônio , Monoterpenos/química , Peróxidos/química , Peróxido de Hidrogênio , Ácidos Carboxílicos , Aerossóis
17.
Environ Sci Technol ; 58(10): 4737-4750, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408453

RESUMO

Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Alcanossulfonatos , Ácidos Carboxílicos/análise
18.
Water Res ; 253: 121316, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377926

RESUMO

Non-thermal plasma emerges as a promising technology for per- and polyfluoroalkyl substances (PFAS) decomposition due to its notable efficacy and environmentally friendly characteristics. In this study, we demonstrated the efficacy of a falling film dielectric barrier discharge (DBD) system for the removal of 10 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs) and hexafluoropropylene oxide (HFPO) oligomer acids. Results showed that compounds with fluoroalkyl chain length>4 were effectively decomposed within 100 min, with long-chain PFAS demonstrating more pronounced removal performance than their short-chain analogues. The superior removal but low defluorination observed in HFPO oligomer acids could be ascribed to their ether-based structural features. The integration of experimental results with density functional theory (DFT) calculations revealed that the synergistic effects of various reactive species are pivotal to their efficient decomposition, with electrons, OH•, and NO2• playing essential roles. In contrast, the degradation of PFSAs was more dependent on electron attack than that of PFCAs and HFPO oligomer acids. Significantly, the most crucial degradation pathway for HFPO oligomer acids was the cleavage of ether CO, whether through radical or electron attack. Furthermore, the demonstrated effective removal in various water matrices showed the potential of the plasma system for removing PFAS in complex aquatic environments. This study provided mechanistic insights into PFAS degradation behavior in plasma processes, and it underscored the vital influence of molecular structures on degradability, thereby contributing to the further development and regulation of plasma-based technologies for treating PFAS in water.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Ácidos Sulfônicos , Éteres
19.
Waste Manag ; 178: 176-185, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401431

RESUMO

This work aims to improve the continuous co-fermentation of waste activated sludge (WAS) and food waste (FW) by investigating the long-term impact of temperature on fermentation performance and the underpinning microbial community. Acidogenic co-fermentation of WAS and FW (70:30 % VS-basis) to produce volatile fatty acids (VFA) was studied in continuous fermenters at different temperatures (25, 35, 45, 55 °C) at an organic loading rate of 11 gVS/(L·d) and a hydraulic retention time of 3.5 days. Two batches of WAS (A and B) were collected from the same wastewater treatment plant at different periods to understand the impact of the WAS microbioota on the fermenters' microbial communities. Solubilisation yield was higher at 45 °C (575 ± 68 mgCOD/gVS) followed by 55 °C (508 ± 45 mgCOD/gVS). Fermentation yield was higher at 55 °C (425 ± 28 mgCOD/gVS) followed by 35 °C (327 ± 17 mgCOD/gVS). Temperature also had a noticeable impact on the VFA profile. At 55 °C, acetic (40 %) and butyric (40 %) acid dominated, while acetic (37 %), butyric acid (31 %), and propionic acid (17 %) dominated at 35 °C. At 45 °C, an accumulation of caproic acid was detected which did not occur at other temperatures. Each temperature had a distinct microbial community, where the WAS microbiota played an important role. The biomass mass-balance showed the highest growth of microorganisms (51 %) at 35 °C and WAS_B, where a consumption of acetic acid was observed. Therefore, at 35 °C, there is a higher risk of acetic acid consumption probably due to the proliferation of methanogens imported from WAS.


Assuntos
Eliminação de Resíduos , Esgotos , Fermentação , Reatores Biológicos , Temperatura , Ácidos Carboxílicos , Alimentos , Ácidos Graxos Voláteis , Ácido Acético , Concentração de Íons de Hidrogênio
20.
Microbiol Spectr ; 12(4): e0321223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411110

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE: The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.


Assuntos
Benzimidazóis , Ácidos Carboxílicos , Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Daptomicina/farmacologia , Staphylococcus aureus , Cefalosporinas/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...