Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.533
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474156

RESUMO

Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Adulto , Animais , Humanos , Camundongos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540740

RESUMO

Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/ß defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.


Assuntos
Anti-Infecciosos , Catelicidinas , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Cicatrização , Pele/metabolismo
3.
Sci Rep ; 14(1): 6750, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514730

RESUMO

Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.


Assuntos
Ácidos e Sais Biliares , Catelicidinas , Humanos , Ácidos e Sais Biliares/metabolismo , Catelicidinas/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Epitélio/metabolismo , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo
4.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38501672

RESUMO

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Assuntos
Aspergillus fumigatus , Ceratite , Compostos de Fenilureia , Humanos , Animais , Camundongos , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipase C gama/metabolismo , Ceratite/microbiologia , Prognóstico , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 15: 1295168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384468

RESUMO

Candida albicans remains the predominant cause of fungal infections, where adhered microbial cells form biofilms - densely packed communities. The central feature of C. albicans biofilms is the production of an extracellular matrix (ECM) consisting of polymers and extracellular nucleic acids (eDNA, eRNA), which significantly impedes the infiltration of host cells. Neutrophils, as crucial players in the innate host defense, employ several mechanisms to eradicate the fungal infection, including NETosis, endocytosis, or the release of granules containing, among others, antimicrobial peptides (AMPs). The main representative of these is the positively charged peptide LL-37 formed from an inactive precursor (hCAP18). In addition to its antimicrobial functions, this peptide possesses a propensity to interact with negatively charged molecules, including nucleic acids. Our in vitro studies have demonstrated that LL-37 contacting with C. albicans nucleic acids, isolated from biofilm, are complexed by the peptide and its shorter derivatives, as confirmed by electrophoretic mobility shift assays. We indicated that the generation of the complexes induces discernible alterations in the neutrophil response to fungal nucleic acids compared to the effects of unconjugated molecules. Our analyses involving fluorescence microscopy, flow cytometry, and Western blotting revealed that stimulation of neutrophils with DNA:LL-37 or RNA:LL-37 complexes hamper the activation of pro-apoptotic caspases 3 and 7 and fosters increased activation of anti-apoptotic pathways mediated by the Mcl-1 protein. Furthermore, the formation of complexes elicits a dual effect on neutrophil immune response. Firstly, they facilitate increased nucleic acid uptake, as evidenced by microscopic observations, and enhance the pro-inflammatory response, promoting IL-8 production. Secondly, the complexes detection suppresses the production of reactive oxygen species and attenuates NETosis activation. In conclusion, these findings may imply that the neutrophil immune response shifts toward mobilizing the immune system as a whole, rather than inactivating the pathogen locally. Our findings shed new light on the intricate interplay between the constituents of the C. albicans biofilm and the host's immune response and indicate possible reasons for the elimination of NETosis from the arsenal of the neutrophil response during contact with the fungal biofilm.


Assuntos
Candida albicans , Ácidos Nucleicos , Candida albicans/fisiologia , Neutrófilos , Catelicidinas/farmacologia , Ácidos Nucleicos/metabolismo , Biofilmes
6.
ACS Infect Dis ; 10(3): 951-960, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38315114

RESUMO

The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 µg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.


Assuntos
Anti-Infecciosos , Catelicidinas , Lagartos , Camundongos , Animais , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
7.
Peptides ; 175: 171183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423213

RESUMO

Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Catelicidinas , Diabetes Mellitus Experimental , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Catelicidinas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização
8.
Sci Rep ; 14(1): 3991, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368484

RESUMO

The number of genome-level resources for non-model species continues to rapidly expand. However, frog species remain underrepresented, with up to 90% of frog genera having no genomic or transcriptomic data. Here, we assemble the first genomic and transcriptomic resources for the recently described southern stuttering frog (Mixophyes australis). The southern stuttering frog is ground-dwelling, inhabiting naturally vegetated riverbanks in south-eastern Australia. Using PacBio HiFi long-read sequencing and Hi-C scaffolding, we generated a high-quality genome assembly, with a scaffold N50 of 369.3 Mb and 95.1% of the genome contained in twelve scaffolds. Using this assembly, we identified the mitochondrial genome, and assembled six tissue-specific transcriptomes. We also bioinformatically characterised novel sequences of two families of antimicrobial peptides (AMPs) in the southern stuttering frog, the cathelicidins and ß-defensins. While traditional peptidomic approaches to peptide discovery have typically identified one or two AMPs in a frog species from skin secretions, our bioinformatic approach discovered 12 cathelicidins and two ß-defensins that were expressed in a range of tissues. We investigated the novelty of the peptides and found diverse predicted activities. Our bioinformatic approach highlights the benefits of multi-omics resources in peptide discovery and contributes valuable genomic resources in an under-represented taxon.


Assuntos
Gagueira , beta-Defensinas , Animais , Peptídeos Antimicrobianos , beta-Defensinas/genética , Multiômica , Austrália , Catelicidinas/genética , Anuros/genética , Cromossomos
9.
Int Immunopharmacol ; 129: 111595, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38295541

RESUMO

Cathelicidins are an important family of antimicrobial peptides (AMPs) involved in the innate immunity in vertebrates. The mammalian cathelicidins have been well characterized, but the relationship between structure and function in amphibian cathelicidins is still not well understood. In this study, a novel 29-residue cathelicidin antimicrobial peptide (BugaCATH) was identified from the skin of Bufo gargarizans. Unlike other AMPs, BugaCATH does not display any direct antimicrobial effects in vitro. However, it effectively promotes full-thickness wound repair in mice. Following injury, BugaCATH initiates and expedites the inflammatory stage by recruiting neutrophils and macrophages to the wound site. BugaCATH not only regulates neutrophil phagocytic activity but also stimulates the generation of cytokines (TNF-α, IL-6, and IL-1ß) and chemokines (CXCL1, CXCL2, CCL2, and CCL3) in macrophages and in mice. Furthermore, it promotes macrophage M2 polarization that facilitates the conversion from a pro-inflammatory macrophage-dominated wound environment to an anti-inflammatory one during the mid to late stages, which is crucial for reducing inflammation and effective wound repair. The MAPK (ERK, JNK, and p38) and NF-κB-NLRP3 signaling pathways are involved in the activity. Moreover, BugaCATH directly enhances the migration of keratinocytes and vascular endothelial cells without affecting their proliferation. Notably, BugaCATH significantly improves the proliferation of keratinocytes and endothelial cells in the presence of macrophages. The current study revealed that in addition to proliferation of keratinocytes and endothelial cells, BugaCATH possesses the ability to modulate inflammatory processes during skin injury through its regulatory effect on phagocytes. The combination of these capabilities makes BugaCATH a potent candidate for skin wound therapy.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Camundongos , Animais , Células Endoteliais , Cicatrização , Macrófagos , Anuros , Mamíferos
10.
Appl Microbiol Biotechnol ; 108(1): 126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229302

RESUMO

An alarming global public health and economic peril has been the emergence of antibiotic resistance resulting from clinically relevant bacteria pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species constantly exhibiting intrinsic and extrinsic resistance mechanisms against last-resort antibiotics like gentamycin, ciprofloxacin, tetracycline, colistin, and standard ampicillin prescription in clinical practices. The discovery and applications of antimicrobial peptides (AMPs) with antibacterial properties have been considered and proven as alternative antimicrobial agents to antibiotics. In this study, we have designed, produced, and purified a recombinant novel multifunctional hybrid antimicrobial peptide LL-37_Renalexin for the first time via the application of newly designed flexible GS peptide linker coupled with the use of our previously characterized small metal-binding proteins SmbP and CusF3H+ as carrier proteins that allow for an enhanced bacterial expression, using BL21(DE3) and SHuffle T7(DE3) Escherichia coli strains, and purification of the hybrid peptide via immobilized metal affinity chromatography. The purified tag-free LL-37_Renalexin hybrid peptide exhibited above 85% reduction in bacteria colony-forming units and broad-spectrum antimicrobial effects against Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae bacteria clinical isolates at a lower minimum inhibition concentration level (10-33 µM) as compared to its counterpart single-AMPs LL-37 and Renalexin (50-100 µM). KEY POINTS: • The hybrid antimicrobial peptide LL-37_Renalexin has been designed using a GS linker. • The peptide was expressed with the carrier proteins SmbP and CusF3H+. • The hybrid peptide shows antibacterial potency against clinical bacterial isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Catelicidinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Staphylococcus aureus , Escherichia coli/genética , Proteínas de Transporte/farmacologia , Testes de Sensibilidade Microbiana
11.
BMC Oral Health ; 24(1): 79, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218769

RESUMO

INTRODUCTION: Vitamin D performs various functions as a hormone by promoting calcium absorption but plays a major role in innate immunity,cell differentiation, cell maturation through its genomic effects via vitamin D receptor. The immune response also plays a major role in tooth surface and supporting structure destruction and playing a major factor in high caries formation. The inflammatory cytokines are released has proinflammatory cytokines and stimulate cells in disease process. Therefore, in the present study we have evaluated the association of salivary vitamin D, LL-37, interleukins 6 and 17A in various levels of severity of dental caries. METHOD: Ethical approval was obtained (NU/CEC/2020/0339), 377 individuals reporting to department of conservative dentistry and endodontics, AB Shetty memorial institute of dental sciences were included based on inclusion criteria. The individuals were further divided into caries free(N = 105) and caries active(N = 272) based on their caries prevalence. The salivary were collected and evaluated for vitamin D, LL-37,IL-17A and IL-6.Results were statistically analysed with SPSS vs 22 (IBM Corp, USA). Normally distributed data were expressed as mean ± SD. Skewed data were expressed as median and interquartile range. To compare (mean) outcome measures between the two groups unpaired independent t-test was applied and for values in median IQR, Mann Whitney U test was used. All statistical analysis for P value were two-sided and significance was set to P ≤ 0.05. RESULTS: The study showed that, the salivary vitamin D statistically decreased with increasing severity of caries which showed that vitamin D plays an important role in prevention of caries. Antimicrobial peptide LL-37 was higher in caries free group but was not statistically significant, salivary IL-6 level was higher in caries active group but intergroup comparison did not show significant difference. Salivary IL-17A did not show statistically significant between caries active and caries free group. CONCLUSION: The salivary levels of vitamin D may play a vital role in prevalence of dental caries and its severity which can be a underlying cause in presence of other etiological factors.


Assuntos
Anti-Infecciosos , Cárie Dentária , Humanos , Vitamina D , Catelicidinas/análise , Catelicidinas/metabolismo , Interleucina-17 , Cárie Dentária/epidemiologia , Peptídeos Antimicrobianos , Interleucina-6/metabolismo , Saliva/química , Anti-Infecciosos/farmacologia , Proteínas e Peptídeos Salivares/metabolismo
12.
PLoS Pathog ; 20(1): e1011967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271479

RESUMO

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Catelicidinas/farmacologia , Internalização do Vírus , Antivirais/metabolismo
13.
Microb Pathog ; 187: 106540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190945

RESUMO

This study synthesized an antimicrobial peptide based on the bovine cathelicidin BMAP 27 sequence. It was found to have a broad spectrum of antibacterial activity, with exceptionally high activity against Salmonella. However, the antibacterial mechanism of BMAP 27 against Salmonella remains unclear. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of BMAP 27 against Salmonella enterica serovar Typhimurium were determined to be 2 µM and 4 µM, respectively. After treatment with 2 MIC of BMAP 27, the absorbance of DNA in centrifugal supernatant increased from 0.244 to 1.464, and that of protein rose from 0.174 to 0.774, respectively. BMAP 27 has compromised the cell membrane as observed through field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), and confirmed by the propidium iodide (PI) test. The alkaline phosphatase (AKP) enzyme activity in the supernatant of the 2 MIC treatment group was 2.15 times higher than the control group, indicating extracellular membrane damage. BMAP 27 treatment increased intracellular ROS levels as tested by dichlorofluorescein diacetate (DCFH) staining. DNA interaction analysis revealed that BMAP 27 has a binding affinity towards DNA, causing its characteristic bands to disappear and peak intensity at 260 nm to reduce. Molecular docking identified its potential binding mode with DNA. The crystal violet biofilm staining results demonstrated that BMAP 27 inhibited S. Typhimurium biofilm formation by 43.1 % and cleared mature biofilms by 53.62 %. Confocal Laser scanning electron microscopy (CLSM) observed that BMAP 27 could kill bacteria within the biofilm and dislodge bacteria from the surface of glasses. Swimming tests identified that the motor capacity of S. Typhimurium was diminished by BMAP 27. By counting the total bacteria, BMAP 27 was revealed to exert bacteriostatic effects in chilled pork and orange juice, which might provide a basis for its application in the inhibition of Salmonella.


Assuntos
Catelicidinas , Salmonella typhimurium , Animais , Bovinos , Catelicidinas/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes , Bactérias , DNA
14.
Chem Biol Drug Des ; 103(1): e14406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065687

RESUMO

Botulinum toxin type A (BoNT/A) has exhibited efficacy in postherpetic neuralgia (PHN) treatment, and this study aims to uncover its underlying mechanisms. Resiniferatoxin (RTX)-induced PHN rats were given BoNT/A. Rat postoperative pain behaviors were assessed by Von Frey test. Cleaved-synaptosomal protein 25 kDa (cl-SNAP-25) or cathelicidin antimicrobial peptide (CAMP) expression in rat dorsal root ganglia (DRG) was detected by immunofluorescence or immunohistochemistry. Healthy rat-derived DRG neurons were transfected, incubated with lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) to stimulate pyroptosis and treated with BoNT/A. The CCK-8, Western blot, ELISA, and qRT-PCR were used to assess the viability, levels of pyroptosis-related proteins proinflammatory cytokine levels, as well as CAMP and ELANE mRNA levels. BoNT/A (30 U/kg) promoted cl-SNAP-25 expression in rat DRG and reversed RTX-induced decrease of rat paw withdrawal thresholds and CAMP expression and increase of pyroptosis-associated protein and inflammatory factor expression in rat DRG. CAMP interacted with ELANE in rat DRG neurons. BoNT/A attenuated LPS/ATP-stimulated inhibition of viability and CAMP expression and upregulation of inflammatory mediators, pyroptosis-related proteins, and ELANE expression in rat DRG neurons, which was counteracted by CAMP silencing. However, ELANE knockdown offset the effect of CAMP silencing in LPS/ATP/BoNT/A-treated rat DRG neurons. On the whole, BoNT/A alleviates rat DRG neuron pyroptosis during PHN by upregulating CAMP to inhibit ELANE.


Assuntos
Toxinas Botulínicas Tipo A , Neuralgia Pós-Herpética , Ratos , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/metabolismo , Neuralgia Pós-Herpética/metabolismo , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Gânglios Espinais/metabolismo , Lipopolissacarídeos/farmacologia , Piroptose , Neurônios , Trifosfato de Adenosina/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L206-L212, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113313

RESUMO

Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 µM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Camundongos , Humanos , Animais , Catelicidinas/farmacologia , Catelicidinas/uso terapêutico , Peptídeos Catiônicos Antimicrobianos , Modelos Animais de Doenças , Pneumonia Bacteriana/tratamento farmacológico , Heparitina Sulfato , Oligossacarídeos/uso terapêutico , Antibacterianos
16.
Nanoscale ; 16(2): 887-902, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38105768

RESUMO

Gram-negative sepsis has become a substantial and escalating global healthcare challenge due to the growing antibiotic resistance crisis and the sluggish development of new antibiotics. LL-37, a unique Cathelicidin species found in humans, exhibits a wide range of bioactive properties, including direct bactericidal effects, inflammation regulation, and LPS neutralization. KR-12, the smallest yet potent peptide fragment of LL-37, has been modified to create more effective antimicrobials. In this study, we designed two myristoylated derivatives of KR-12, referred to as Myr-KR-12N and Myr-KR-12C. These derivatives displayed remarkable ability to spontaneously assemble into nanoparticles when mixed with deionized water. Myristoylated KR-12 derivatives exhibited broad-spectrum and intensified bactericidal activity by disrupting bacterial cell membranes. In particular, Myr-KR-12N showed superior capability to rescue mice from lethal E. coli-induced sepsis in comparison with the conventional antibiotic meropenem. We also confirmed that the myristoylated KR-12 nanobiotic possesses significant LPS binding capacity and effectively reduces inflammation in vitro. In an in vivo context, Myr-KR-12N outperformed polymyxin B in rescuing mice from LPS-induced sepsis. Crucially, toxicological assessments revealed that neither Myr-KR-12N nor Myr-KR-12C nanobiotics induced meaningful hemolysis or caused damage to the liver and kidneys. Collectively, our study has yielded an innovative nanobiotic with dual capabilities of bactericidal action and LPS-neutralization, offering substantial promise for advancing the clinical translation of antimicrobial peptides and the development of novel antibiotics. This addresses the critical need for effective solutions to combat Gram-negative sepsis, a pressing global medical challenge.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos/química , Escherichia coli/metabolismo , Catelicidinas/química , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Bactérias , Sepse/tratamento farmacológico , Antibacterianos/química , Testes de Sensibilidade Microbiana
17.
Zool Res ; 45(1): 108-124, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114437

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αßß conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.


Assuntos
Discinesias , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , 1-Metil-4-fenilpiridínio/farmacologia , 1-Metil-4-fenilpiridínio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catelicidinas/metabolismo , Discinesias/tratamento farmacológico , Discinesias/veterinária , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Doença de Parkinson/veterinária
18.
World J Microbiol Biotechnol ; 40(1): 34, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057654

RESUMO

The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.


Assuntos
Anti-Infecciosos , Catelicidinas , Animais , Humanos , Catelicidinas/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Candida
19.
Sci Rep ; 13(1): 18728, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907616

RESUMO

Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.


Assuntos
Anti-Infecciosos , Corvos , Animais , Humanos , Peptídeos Antimicrobianos , Staphylococcus aureus/genética , Escherichia coli/genética , Lipopolissacarídeos , Perfilação da Expressão Gênica , Anti-Infecciosos/farmacologia , Catelicidinas/química , Transcriptoma
20.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958632

RESUMO

Hepatocellular carcinoma (HCC) is associated with high rates of metastasis and recurrence, and is one of the most common causes of cancer-associated death worldwide. This study examined the protein changes within circulating exosomes in patients with HCC against those in healthy people using isobaric tags for a relative or absolute quantitation (iTRAQ)-based quantitative proteomics analysis. The protein levels of von Willebrand factor (VWF), cathelicidin antimicrobial peptide (CAMP), and proteasome subunit beta type-2 (PSMB2) were altered in HCC. The increased levels of VWF and PSMB2 but decreased CAMP levels in the serum of patients with HCC were validated by enzyme-linked immunosorbent assays. The level of CAMP (the only cathelicidin found in humans) also decreased in the circulating exosomes and buffy coat of the HCC patients. The serum with reduced levels of CAMP protein in the HCC patients increased the cell proliferation of Huh-7 cells; this effect was reduced following the addition of CAMP protein. The depletion of CAMP proteins in the serum of healthy people enhances the cell proliferation of Huh-7 cells. In addition, supplementation with synthetic CAMP reduces cell proliferation in a dose-dependent manner and significantly delays G1-S transition in Huh-7 cells. This implies that CAMP may act as a tumor suppressor in HCC.


Assuntos
Carcinoma Hepatocelular , Catelicidinas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Catelicidinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...