RESUMO
Muscular hydrostats are organs composed entirely of packed arrays of incompressible muscles and lacking any skeletal support. Found in both vertebrates and invertebrates, they are of great interest for comparative biomechanics from engineering and evolutionary perspectives. The arms of cephalopods (e.g. octopus and squid) are particularly interesting muscular hydrostats because of their flexibility and ability to generate complex behaviors exploiting elaborate nervous systems. Several lines of evidence from octopus studies point to the use of both brain and arm-embedded motor control strategies that have evolved to simplify the complexities associated with the control of flexible and hyper-redundant limbs and bodies. Here, we review earlier and more recent experimental studies on octopus arm biomechanics and neural motor control. We review several dynamic models used to predict the kinematic characteristics of several basic motion primitives, noting the shortcomings of the current models in accounting for behavioral observations. We also discuss the significance of impedance (stiffness and viscosity) in controlling the octopus's motor behavior. These factors are considered in light of several new models of muscle biomechanics that could be used in future research to gain a better understanding of motor control in the octopus. There is also a need for updated models that encompass stiffness and viscosity for designing and controlling soft robotic arms. The field of soft robotics has boomed over the past 15 years and would benefit significantly from further progress in biomechanical and motor control studies on octopus and other muscular hydrostats.
Assuntos
Extremidades , Músculos , Octopodiformes , Animais , Fenômenos Biomecânicos , Extremidades/inervação , Extremidades/fisiologia , Músculos/inervação , Músculos/fisiologia , Octopodiformes/fisiologia , Robótica , Cefalópodes/fisiologiaRESUMO
Litter is known to negatively affect numerous marine organisms, but the extent of such impacts is not well known for several groups, including cephalopods. Considering the ecological, behavioral and economic importance of these animals, we reviewed the types of interactions between cephalopods and litter in the scientific literature, to evaluate impacts and knowledge gaps. We found 30 papers, which included records of microplastic ingestion and the transfer of synthetic microfibers along the food web. The largest number of records involved litter use as shelter, and the common octopus was the most frequent species. At first sight, litter use as shelter could appear to be a potential positive effect, but it is necessary to clarify the implications of this choice and its long-term consequences. Regarding ingestion and trophic transfer, further research is needed to elucidate its occurrence and impacts on cephalopods and their predators, including humans.
Assuntos
Cefalópodes , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise , Organismos AquáticosRESUMO
This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 µatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.
Assuntos
Cefalópodes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Metilação , Cefalópodes/metabolismo , Organismos Aquáticos/metabolismo , Poluentes Químicos da Água/análiseRESUMO
The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of AâI RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.
Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Proteoma/genética , Edição de RNA , TranscriptomaRESUMO
Global seafood consumers are increasingly concerned about and prefer safe, high-quality, and hazard-free seafood products. This study investigated various Pakistani processing plants supplying the international market and explored commercially important seafood species (fish, crustaceans, and cephalopods) for metal content, contamination, and potential health risks. The results showed that the metal concentrations differed significantly among species. The metals loads were as Fe > Cu > Zn > Mn > Pb > Ni > Cd > Hg. Contamination factor (CF), pollution load index (PLI), and metal pollution index (MPI), verified negligible contamination of seafood. As assessed by the estimated daily intake, target hazard quotient, hazard index, and carcinogenic risk, the potential human health risks associated with the contaminated seafood were lower than the perceived threat. In conclusion, seafood processing plants export products that meet international food safety standards and are safe for consumers worldwide.
Assuntos
Cefalópodes , Mercúrio , Metais Pesados , Animais , Humanos , Alimentos Marinhos/análise , Metais/análise , Mercúrio/análise , Crustáceos , Medição de Risco , Metais Pesados/análise , Contaminação de Alimentos/análise , Monitoramento AmbientalRESUMO
Cephalopods are set apart from other mollusks by their advanced behavioral abilities and the complexity of their nervous systems. Because of the great evolutionary distance that separates vertebrates from cephalopods, it is evident that higher cognitive features have evolved separately in these clades despite the similarities that they share. Alongside their complex behavioral abilities, cephalopods have evolved specialized cells and tissues, such as the chromatophores for camouflage or suckers to grasp prey. Despite significant progress in genome and transcriptome sequencing, the molecular identities of cell types in cephalopods remain largely unknown. We here combine single-cell transcriptomics with in situ gene expression analysis to uncover cell type diversity in the European squid Loligo vulgaris. We describe cell types that are conserved with other phyla such as neurons, muscles, or connective tissues but also cephalopod-specific cells, such as chromatophores or sucker cells. Moreover, we investigate major components of the squid nervous system including progenitor and developing cells, differentiated cells of the brain and optic lobes, as well as sensory systems of the head. Our study provides a molecular assessment for conserved and novel cell types in cephalopods and a framework for mapping the nervous system of L. vulgaris.
Assuntos
Cefalópodes , Cromatóforos , Loligo , Animais , Decapodiformes/genética , Loligo/fisiologia , Moluscos/fisiologia , Cefalópodes/genética , Cromatóforos/fisiologiaRESUMO
Cephalopods' eyes superficially resemble our own, but because of their evolutionary and developmental history, the photoreceptors face forward, with the downstream neural circuitry in the brain, not the retina. Two new papers uncover molecular and developmental mechanisms underlying cephalopod visual development.
Assuntos
Cefalópodes , Animais , Visão Ocular , Retina , Células Fotorreceptoras , Evolução BiológicaRESUMO
Parasitic 'turbellarians' are known from various animals such as echinoderms, crustaceans, annelids, bivalve and gastropod molluscs. So far, however, no 'turbellarians' have been reported from cephalopods. In this paper we report a parasitic 'turbellarian' from the giant Antarctic octopus, Megaleledone setebos. We dissected two specimens of M. setebos caught in the Ross Sea (Antarctica) and found numerous worms in their intestine and liver. The worms were spherical or oblong and had two morphologically different poles. The frontal pole bears a small conical protrusion containing large elongated pear-shaped frontal glands and large polygonal cells. The ducts of the frontal glands open terminally to form the frontal organ. The caudal pole has an opening shaped as a folded tube connected by the genital pore with a common genital atrium, which continues into a canal with a muscular sheath. The worms were identified as 'turbellarians' from the family Notenteridae (Fecampiida). This family contains only one species, Notentera ivanovi, reported from the gut of a polychaete at the White Sea. The worms that we found in the gastrointestinal tract of the octopuses were morphologically similar to N. ivanovi but differed from it in several important respects. Phylogenetic analysis based on 28S rDNA gene showed that the newly found worm clustered together with other fecampiids in a highly supported clade and was closely related to N. ivanovi. On the basis of these morphological and molecular data, we described a new species, Octopoxenus antarcticus gen. nov., sp. nov. (Fecampiida: Notenteridae), establishing a new genus to accommodate it and provided an updated diagnosis of the family Notenteridae. This is the first report of a parasitic 'turbellarian' from a cephalopod mollusc.
Assuntos
Cefalópodes , Platelmintos , Animais , DNA Ribossômico , Moluscos , FilogeniaRESUMO
BACKGROUND: Epigenetic regulatory mechanisms are divergent across the animal kingdom, yet these mechanisms are not well studied in non-model organisms. Unique features of cephalopods make them attractive for investigating behavioral, sensory, developmental, and regenerative processes, and recent studies have elucidated novel features of genome organization and gene and transposon regulation in these animals. However, it is not known how epigenetics regulates these interesting cephalopod features. We combined bioinformatic and molecular analysis of Octopus bimaculoides to investigate the presence and pattern of DNA methylation and examined the presence of DNA methylation and 3 histone post-translational modifications across tissues of three cephalopod species. RESULTS: We report a dynamic expression profile of the genes encoding conserved epigenetic regulators, including DNA methylation maintenance factors in octopus tissues. Levels of 5-methyl-cytosine in multiple tissues of octopus, squid, and bobtail squid were lower compared to vertebrates. Whole genome bisulfite sequencing of two regions of the brain and reduced representation bisulfite sequencing from a hatchling of O. bimaculoides revealed that less than 10% of CpGs are methylated in all samples, with a distinct pattern of 5-methyl-cytosine genome distribution characterized by enrichment in the bodies of a subset of 14,000 genes and absence from transposons. Hypermethylated genes have distinct functions and, strikingly, many showed similar expression levels across tissues while hypomethylated genes were silenced or expressed at low levels. Histone marks H3K27me3, H3K9me3, and H3K4me3 were detected at different levels across tissues of all species. CONCLUSIONS: Our results show that the DNA methylation and histone modification epigenetic machinery is conserved in cephalopods, and that, in octopus, 5-methyl-cytosine does not decorate transposable elements, but is enriched on the gene bodies of highly expressed genes and could cooperate with the histone code to regulate tissue-specific gene expression.
Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Cefalópodes/metabolismo , Citosina/metabolismo , Elementos de DNA Transponíveis/genética , Epigênese Genética , SulfitosRESUMO
Length-weight relationship (LWR) studies have been widely conducted for fish. They are important because they provide information about the growth of the fish, its general wellbeing, and fitness in a marine habitat. In comparison, relatively few LWR studies have been conducted on cephalopods. A total of 13,474 specimens belonging to 28 cephalopod species was investigated to define their length-weight relationship status and Fulton's condition factors, and compared with previous studies to evaluate life history traits and test comparability of LWR values. Isometry was found in 8 species including 2 teuthids, 2 sepiids and 4 octopods, and positive allometry was found in 2 squid species. Other species showed negative allometry. Four orders of the class Cephalopoda distributed in the Mediterranean Sea were also compared in respect of their coefficient b values, and a clear distinction was found between the orders reflecting their characteristic body types and thus lifestyles. Coefficient b values of mature animals were found lower than that of maturing ones that reflects growth of semelparous cephalopods stops or at least slows down when they reach maturity. Some extreme condition factor values were calculated for especially octopods that one of them reached to 140.91 in a deep-sea octopus Pteroctopus tetracirrhus. It suggests that there are many factors that might affect the calculations. Some of them were: different body structure and growth type in cephalopods than that of fish, different length measurement method applied in cephalopods, different body parts that might have different growth rates, and preservation methods that could affect the body shape and weight in soft bodied animals.
Assuntos
Cefalópodes , Octopodiformes , Animais , Decapodiformes , Ecossistema , Peixes , Mar MediterrâneoRESUMO
Externally shelled cephalopods with coiled, planispiral conchs were ecologically successful for hundreds of millions of years. These animals displayed remarkable morphological disparity, reflecting comparable differences in physical properties that would have constrained their life habits and ecological roles. To investigate these constraints, self-propelling, neutrally buoyant, biomimetic robots were 3D-printed for four disparate morphologies. These robots were engineered to assume orientations computed from virtual hydrostatic simulations while producing Nautilus-like thrusts. Compressed morphotypes had improved hydrodynamic stability (coasting efficiency) and experienced lower drag while jetting backwards. However, inflated morphotypes had improved maneuverability while rotating about the vertical axis. These differences highlight an inescapable physical tradeoff between hydrodynamic stability and yaw maneuverability, illuminating different functional advantages and life-habit constraints across the cephalopod morphospace. This tradeoff reveals there is no single optimum conch morphology, and elucidates the success and iterative evolution of disparate morphologies through deep time, including non-streamlined forms.
Assuntos
Cefalópodes , Robótica , Animais , Biomimética , Cefalópodes/anatomia & histologia , Hábitos , HidrodinâmicaRESUMO
Cephalopods possess a dynamic coloration behavior to change their iridescence due to the concentration-induced optical properties of chromatophores and hierarchical assembly of reflectin. However, cephalopods rarely have iridescence in the darkfield. It would be interesting to develop color-tunable fluorescent hierarchical nanoassemblies with concentration-encoded emission. Herein, to construct the bioavailable fluorophore with dynamic coloration properties, a histidine-rich peptide is designed, which can self-assemble into hierarchical nanoassemblies stabilized by hydrogen bonds and π-π stacking interactions. The peptidyl nanoassemblies emit fluorescent iridescence, encompassing the blue to orange region due to the assembly-induced emission. The fluorescence of histidine-rich peptides is color-tunable and reversible, which can be dynamically controlled in a concentration-encoded mode. Due to the coloration ability of histidine-rich peptides, fluorescent polychromatic human cells are developed, highlighting its potential role as a fluorescent candidate for future applications such as bioimaging, implantable light-emitting diodes, and photochromic camouflage.
Assuntos
Cefalópodes , Histidina , Animais , HumanosRESUMO
Cephalopod (e.g., squid, octopus, etc.) skin is a soft cognitive organ capable of elastic deformation, visualizing, stealth, and camouflaging through complex biological processes of sensing, recognition, neurologic processing, and actuation in a noncentralized, distributed manner. However, none of the existing artificial skin devices have shown distributed neuromorphic processing and cognition capabilities similar to those of a cephalopod skin. Thus, the creation of an elastic, biaxially stretchy device with embedded, distributed neurologic and cognitive functions mimicking a cephalopod skin can play a pivotal role in emerging robotics, wearables, skin prosthetics, bioelectronics, etc. This paper introduces artificial neuromorphic cognitive skins based on arrayed, biaxially stretchable synaptic transistors constructed entirely out of elastomeric materials. Systematic investigation of the synaptic characteristics such as the excitatory postsynaptic current, paired-pulse facilitation index of the biaxially stretchable synaptic transistor under various levels of biaxial mechanical strain sets the operational foundation for stretchy distributed synapse arrays and neuromorphic cognitive skin devices. The biaxially stretchy arrays here achieved neuromorphic cognitive functions, including image memorization, long-term memorization, fault tolerance, programming, and erasing functions under 30% biaxial mechanical strain. The stretchy neuromorphic imaging sensory skin devices showed stable neuromorphic pattern reinforcement performance under both biaxial and nonuniform local deformation.
Assuntos
Órgãos Artificiais , Robótica , Pele , Sinapses , Animais , Cefalópodes , Cognição , Pele/inervação , Transistores EletrônicosRESUMO
The common Chinese cuttlefish (Sepiella inermis) is an important cephalopod with nutritional and commercial value. Intensive inking stimulated by swilling seawater in transfer containers threatens the survival of cephalopods during transportation. However, the molecular basis for the inking behavior of S. inermis remains unclear. In the present study, transcriptome analysis was performed on ink sac and brain tissues from S. inermis under two different conditions, i.e. the control group (with individuals immersed in static seawater) and the experimental group (with individuals immersed in swilling seawater) to determine the global gene expression differences. The individuals from the experimental group ejected ink in response to the swilling of seawater. 330,699 unigenes were obtained from twelve transcriptome libraries via the Illumina Hiseq X platform, and the differentially expressed genes in the ink sac and brain tissues were identified respectively. Multiple upregulated genes in the ink sac were involved in cation transporter activity. Besides, an autocrine/paracrine factor wnt10b like and two important transcription factors (homeobox 1 and Hes-1-b-like) were also significantly upregulated in the ink sac. Moreover, a neuronal nitric oxide synthase (nNOS) was significantly downregulated in the brain. The findings from this study provide an important transcriptomic resource for discovering critical genes related to inking behavior of S. inermis, providing a basis for developing potential methods for protecting S. inermis from intensive inking.
Assuntos
Cefalópodes , Animais , Encéfalo , Cefalópodes/genética , Decapodiformes/genética , Decapodiformes/metabolismo , Perfilação da Expressão Gênica , Humanos , Tinta , TranscriptomaRESUMO
Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing.
Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Decapodiformes/genética , Genoma/genética , RNA Mensageiro/genética , Transcriptoma/genéticaRESUMO
The taphonomic mechanisms of a mono- to pauci-specific ammonoid fauna comprising 3565 specimens from the lower Carnian Polzberg Konservat-Lagerstätte near Lunz am See (Northern Calcareous Alps, Lower Austria) is described. The fossiliferous layers were deposited during the Julian 2 Ib (Austrotrachyceras austriacum Zone, Austrotrachyceras minor biohorizon). The deposits comprise abundant nektic ammonoids of the trachyceratid genus Austrotrachyceras. The bivalve Halobia, dominant among the invertebrates, is followed in abundance by the ammonoids Austrotrachyceras and Paratrachyceras, the coleoid Phragmoteuthis and frequent vertebrate actinopterygian fish. The monotonous ammonoid assemblage comprises abundant Austrotrachyceras, frequent Paratrachyceras, rare Carnites and Simonyceras. Recently collected ammonoids were sampled bed-by-bed and compared to extensive historical collections from the same localities. Bromalites (coprolites and regurgitalites) produced by large durophagous fish comprise ammonoid and fish masses and accompany the ammonoid-dominated Polzberg palaeobiota. The ammonoid fauna here presents a window into the nektic cephalopod world of the Upper Triassic assemblage and palaeoenvironment during the deposition of the fossiliferous layers. The frequent occurrence of the vertically oriented (external side horizontal to bedding plane) ammonoid shell fragments hint at a deposition after lethal fish or coleoid attacks. The Polzberg ammonoids were deposited under calm and dysoxic conditions in fine-laminated marlstones and shales of the lower Carnian Polzberg Sub-Basin within the Polzberg Konservat-Lagerstätte.
Assuntos
Cefalópodes , Fósseis , Animais , Peixes , Manejo de Espécimes , VertebradosRESUMO
BACKGROUND: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.
Assuntos
Cefalópodes , Animais , Teorema de Bayes , Cefalópodes/genética , Fósseis , Filogenia , ProbabilidadeRESUMO
Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes. We show that coleoid cephalopod genomes have been extensively restructured compared to other animals, leading to the emergence of hundreds of tightly linked and evolutionary unique gene clusters (microsyntenies). Such novel microsyntenies correspond to topological compartments with a distinct regulatory structure and contribute to complex expression patterns. In particular, we identify a set of microsyntenies associated with cephalopod innovations (MACIs) broadly enriched in cephalopod nervous system expression. We posit that the emergence of MACIs was instrumental to cephalopod nervous system evolution and propose that microsyntenic profiling will be central to understanding cephalopod innovations.