Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fungal Genet Biol ; 162: 103728, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932991

RESUMO

Ceratocystis fimbriata is an important pathogen that causes wilt in several plant species. Despite the importance of this pathogen, knowledge about its karyotypic polymorphism and genomic architecture is limited. The main objective of this study was to investigate the karyotype of isolates of the C. fimbriata species complex from different host plants and geographical origins in Brazil. First, the identity of the isolates was confirmed conducting multilocus sequence analysis (MLSA) phylogeny using ß-tubulin (TUBB), translation elongation factor 1α (TEF-1α) and mating-type (MAT1 and MAT2) gene sequences. To investigate the chromosomal polymorphism, two conditions of pulsed-field gel electrophoresis (PFGE) were used and the karyotypes of the isolates obtained. The retrotransposon-microsatellite amplified polymorphism (REMAP) molecular marker was utilized to assess the genetic variability among isolates. In the MLSA utilizing the concatenated gene sequences, Ceratocystis cacaofunesta and C. fimbriata formed separate clades, but considerable variation among C. fimbriata isolates was observed. Polymorphism in chromosome number and size was found, indicating the existence of genomic differences among isolates and occurrence of chromosomal rearrangements in the species complex. The number of chromosomes varied from seven to nine and the estimated minimum chromosome sizes were estimated to be between 2.7 and 6.0 Mbp. Small polymorphic chromosomes ranging from 1.2 to 1.8 Mbp were observed in all isolates, raising the hypothesis that they could be supernumerary chromosomes. REMAP analysis revealed a high genetic variability and that isolates from the same host tend to group together in a same cluster. Our results bring new insights into the chromosomal diversity and genome organization of the C. fimbriata complex.


Assuntos
Ascomicetos , Brasil , Ceratocystis , Cromossomos , DNA Fúngico/genética , Variação Genética/genética , Doenças das Plantas/genética
2.
Plant Dis ; 106(4): 1114-1121, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34752125

RESUMO

A new and devastating disease, rapid ohia death (ROD), in Hawaii led to a state quarantine that regulates interisland transport of ohia wood and plant material to prevent spread of the causal pathogens. Heat treatments of ohia logs in commercial trade were considered for phytosanitary treatment. Vacuum steam (VS) was evaluated for its ability to eradicate the pathogens, Ceratocystis lukuohia and C. huliohia, in main stem logs from ROD-affected forest trees. Replicate loads of three debarked logs (24 to 43 cm in diameter, 1.7 to 2.0 m long) were VS treated at 56°C for 30 min (five loads) or 60°C for 60 min (four loads) at a sapwood depth equal to 70% of log radius. Percentage isolation of Ceratocystis from VS and ambient temperature logs before treatment and summarized by source tree ranged from 12 to 66% and 6 to 31% based on carrot baiting assays of tissue taken from outer and inner sapwood, respectively. No viable Ceratocystis was detected in sapwood locations for the 60°C/60 min schedule or inner locations for the 56°C/30 min schedule after treatment. Only one subsample (0.48%, n = 208) of the latter schedule treatment yielded Ceratocystis. Time needed for treatment ranged from 7.4 to 15 h for the 56°C/30 min schedule and from 8.6 to 19.2 h for the 60°C/60 min schedule. These results demonstrate that VS is an effective and efficient method for treating large-diameter ohia logs that mill owners and regulatory plant pathologists may consider for use in Hawaii.


Assuntos
Myrtaceae , Vapor , Ceratocystis , Vácuo
3.
Plant Dis ; 106(2): 661-668, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34597147

RESUMO

The genus Ceratocystis contains several significant plant pathogens, causing wilt and canker disease on a wide range of plant species. There are >40 known species of Ceratocystis, some of which are becoming increasingly important in agricultural or natural ecosystems. The diagnostic procedures for most Ceratocystis species rely on time-consuming and labor-intensive culturing approaches. To provide more time-efficient and sensitive molecular diagnostic tools for Ceratocystis, a generic TaqMan real-time PCR assay was developed using the ITS gene. This novel two-probe TaqMan assay amplified DNA from all tested Ceratocystis species. Some nonspecific amplification of a few species from closely related genera was observed under certain conditions; however, these false-positive detections could be ruled out using the additional PCR primers developed for further sequence-based identification of the detected species. The assay was found to be highly sensitive, as it detected 0.2 pg/µl of Ceratocystis DNA in water as well as in host DNA matrix. Further validation with artificially inoculated fig stem tissue demonstrated that the assay was also able to effectively detect the pathogen in infected asymptomatic stem tissue. This newly developed real-time PCR assay has practical applications in biosecurity, conservation, and agriculture; it will enable the detection of Ceratocystis species directly from plant material to facilitate more sensitive screening of imported plant germplasm, and allow rapid tracking of pathogens in the case of disease outbreaks.


Assuntos
Ceratocystis , Ecossistema , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real
4.
J Agric Food Chem ; 69(44): 13045-13054, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705454

RESUMO

Black spot disease caused by Ceratocystis fimbriata is destructive to the production, transportation, and storage of sweet potato. The antifungal effects of Bacillus tequilensis XK29 against C. fimbriata through volatile organic compounds (VOCs) were evaluated in this study. The activated carbon assay proved that XK29 could exert antibiotic effects through volatiles. By optimizing the wheat seed weight, inoculation method, concentration, volume, and time, the antifungal activity of XK29 was significantly improved. XK29 fumigation inhibited spore formation and germination and changed the cell morphology of C. fimbriata. During the storage of sweet potato tuber roots, XK29 effectively controlled black spot disease and reduced the weight loss and malondialdehyde content. Metabolomic analysis revealed that 21 volatile compounds were released from XK29. Isovaleric acid, isobutyric acid, and 2-methylbutanoic acid effectively inhibited the growth of C. fimbriata. These results indicate that B. tequilensis XK29 has a good potential to be developed as a microbial fumigation agent.


Assuntos
Ascomicetos , Ipomoea batatas , Antibacterianos , Bacillus , Ceratocystis , Doenças das Plantas
5.
Planta ; 254(5): 94, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34642817

RESUMO

MAIN CONCLUSION: Decreased accumulation of polyphenol oxidase, H2O2 accumulation, effective regulation of programmed cell death, and a protein predicted as allergenic can play key roles in cacao defense against Ceratocystis cacaofunesta. Ceratocystis wilt, caused by the fungus Ceratocystis cacaofunesta, has destroyed millions of Theobroma cacao trees in several countries of the Americas. Through proteomics, systems biology, and enzymatic analyses of infected stems, it was possible to infer mechanisms used by resistant (TSH1188) and susceptible (CCN51) cacao genotypes during infection. Protein extraction from xylem-enriched tissue of stems inoculated with the fungus and their controls 1 day after inoculation was carried out, followed by separation through two-dimensional gel electrophoresis and identification by mass spectrometry. Enzyme activity was determined at 1, 3, 7 and 15 days after inoculation. A total of 50 differentially accumulated distinct proteins were identified in the treatments of both genotypes and were classified into 10 different categories. An interaction network between homologous proteins from Arabidospsis thaliana was generated for each genotype, using the STRING database and Cytoscape software. Primary metabolism processes were apparently repressed in both genotypes. The resistance factors suggested for genotype TSH1188 were: H2O2 accumulation, effective regulation of programmed cell death, production of phytoalexins derived from tryptophan and furanocoumarins, and participation of a predicted allergenic protein with probable ribonuclease function inhibiting the germination and propagation of the fungus. In the susceptible genotype, it is possible that its recognition and signaling mechanism through proteins from the SEC14 family is easily overcome by the pathogen. Our results will help to better understand the interaction between cacao and one of its most aggressive pathogens, to create disease control strategies.


Assuntos
Cacau , Ceratocystis , Genótipo , Peróxido de Hidrogênio , Doenças das Plantas , Proteoma , Xilema
6.
Electrophoresis ; 42(23): 2519-2527, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498763

RESUMO

Ceratocystis wilt is a lethal disease of cacao, and the search for resistant genotypes may provide the best way to deal with the disease. Resistance or susceptibility behavior of some cacao genotypes when infected by Ceratocystis cacaofunesta is not yet understood. Herein, we report an LC-MS metabolomic screening analysis based on high-resolution MS to obtain comprehensive metabolic profile associated with multivariate data analysis of PLS-DA, which was effective to classify CCN-51 and TSH-1188 as resistant genotypes to C. cacaofunesta fungus, while CEPEC2002 was classified as a susceptible one. Using reversed-phase LC method, electrospray interface, and high-resolution tandem MS by the quadrupole-TOF analyzer, the typical profiles of metabolites, such as phenylpropanoids, flavonoids, lipids, alkaloids, and amino acids, were obtained. Untargeted metabolite profiles were used to construct discriminant analysis by partial least squares (PLS-DA)-derived loading plots, which placed the cacao genotypes into two major clusters related to susceptible or resistant groups. Linolenic, linoleic, oleic, stearic, arachidonic, and asiatic acids were annotated metabolites of infected, susceptible, and resistant genotypes, while methyl jasmonate, jasmonic acid, hydroxylated jasmonic acid, caffeine, and theobromine were annotated as constituents of the resistant genotypes. Trends of these typical metabolites levels revealed that CCN51 is susceptible, CEPEC2002 is moderately susceptible, and TSH1188 is resistant to C. cacaofunesta. Therefore, profiles of major metabolites as screened by LC-MS offer an efficient tool to reveal the level of resistance of cacao genotypes to C. cacaofunesta present in any farm around the world.


Assuntos
Cacau , Ceratocystis , Doenças das Plantas , Cromatografia Líquida , Resistência à Doença , Genótipo , Metabolômica , Espectrometria de Massas em Tandem
7.
World J Microbiol Biotechnol ; 37(9): 148, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34363541

RESUMO

Black rot, caused by Ceratocystis fimbriata, is one of the most destructive disease of sweet potato worldwide, resulting in significant yield losses. However, a proper management system can increase resistance to this disease. Therefore, this study investigated the potential of using tebuconazole (TEB) and trifloxystrobin (TRI) to improve the antioxidant defense systems in sweet potato as well as the inhibitory effects on the growth of and antioxidant activity in C. fimbriata. Four days after inoculating cut surfaces of sweet potato disks with C. fimbriata, disease development was reduced by different concentrations of TEB + TRI. Infection by C. fimbriata increased the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), and the activity of lipoxygenase (LOX) by 138, 152, 73, and 282%, respectively, in sweet potato disks, relative to control. In the sweet potato disks, C. fimbriata reduced the antioxidant enzyme activities as well as the contents of ascorbate (AsA) and reduced glutathione (GSH) by 82 and 91%, respectively, compared with control. However, TEB + TRI reduced the oxidative damage in the C. fimbriata-inoculated sweet potato disks by enhancing the antioxidant defense systems. On the other hand, applying TEB + TRI increased the levels of H2O2, MDA, and EL, and increased the activity of LOX in C. fimbriata, in which the contents of AsA and GSH decreased, and therefore, inhibited the growth of C. fimbriata. These results suggest that TEB + TRI can significantly control black rot disease in sweet potato by inhibiting the growth of C. fimbriata.


Assuntos
Acetatos/farmacologia , Antioxidantes/farmacologia , Ceratocystis/crescimento & desenvolvimento , Iminas/farmacologia , Ipomoea batatas/crescimento & desenvolvimento , Estrobilurinas/farmacologia , Triazóis/farmacologia , Ceratocystis/efeitos dos fármacos , Resistência à Doença , Sinergismo Farmacológico , Peróxido de Hidrogênio/farmacologia , Ipomoea batatas/microbiologia , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Pest Manag Sci ; 77(10): 4564-4571, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34086397

RESUMO

BACKGROUND: Ceratocystis fimbriata is a hazardous fungal pathogen able to cause black rot disease on sweet potato. The management of C. fimbriata strongly relies on the use of toxic fungicides, and there is a lack of efficient alternative strategies. RESULTS: The antifungal properties of quinolinic acid (QA) were studied for the first time, indicating that QA shows selective antifungal activity against C. fimbriata. QA inhibited completely the mycelial growth of C. fimbriata at less than 0.8 mg mL-1 concentration (pH 4), and was able to produce alterations in the fungal cell wall, and to impede spore agglutination and mycelium formation. QA significantly reduced the concentration of ergosterol, and was able to associate to iron (II), suggesting that QA may be a lanosterol 14-α demethylase inhibitor. In preventive applications, QA reduced the disease incidence of C. fimbriata on sweet potato by 75%, achieving higher control efficacy in comparison with commercial fungicides prochloraz and carbendazim. CONCLUSIONS: The first selective antifungal agent against C. fimbriata was discovered in this work, and showed suitable antifungal properties for the management of black rot disease. © 2021 Society of Chemical Industry.


Assuntos
Ascomicetos , Ipomoea batatas , Ceratocystis , Doenças das Plantas , Ácido Quinolínico
9.
Pestic Biochem Physiol ; 173: 104777, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771256

RESUMO

Ceratocystis fimbriata is the pathogen of black rot disease, which widely exists in sweet potato producing areas all over the world. The antifungal activity of volatile organic compounds (VOCs) released by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 against C. fimbriata was reported in our previous study. In this study, we attempted to reveal the underlying antifungal mechanism of SPS-41 volatiles. Our results showed that the VOCs released by SPS-41 caused the morphological change of hyphae, destroyed the integrity of cell membrane, reduced the content of ergosterol, and induced massive accumulation of reactive oxygen species in C. fimbriata cells. Furthermore, SPS-41 fumigation decreased the mitochondrial membrane potential, acetyl-CoA and pyruvate content of C. fimbriata cells, as well as the mitochondrial dehydrogenases activity. In addition, the VOCs generated by SPS-41 reduced the intracellular ATP content and increased the extracellular ATP content of C. fimbriata. In summary, SPS-41 fumigation exerted its antifungal activity by inducing oxidative stress and mitochondrial dysfunction in C. fimbriata.


Assuntos
Ascomicetos , Compostos Orgânicos Voláteis , Antifúngicos/farmacologia , Ceratocystis , Mitocôndrias , Estresse Oxidativo , Doenças das Plantas , Pseudomonas , Compostos Orgânicos Voláteis/farmacologia
10.
Phytopathology ; 111(9): 1660-1669, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33534610

RESUMO

Black rot of sweetpotato, caused by Ceratocystis fimbriata, is an important reemerging disease threatening sweetpotato production in the United States. This study assessed disease susceptibility of the storage root surface, storage root cambium, and slips (vine cuttings) of 48 sweetpotato cultivars, advanced breeding lines, and wild relative accessions. We also characterized the effect of storage root development on susceptibility to C. fimbriata. None of the cultivars examined at the storage root level were resistant, with most cultivars exhibiting similar levels of susceptibility. In storage roots, Jewel and Covington were the least susceptible and significantly different from White Bonita, the most susceptible cultivar. In the slip, significant differences in disease incidence were observed for above- and below-ground plant structures among cultivars, advanced breeding lines, and wild relative accessions. Burgundy and Ipomoea littoralis displayed less below-ground disease incidence compared with NASPOT 8, Sunnyside, and LSU-417, the most susceptible cultivars. Correlation of black rot susceptibility between storage roots and slips was not significant, suggesting that slip assays are not useful to predict resistance in storage roots. Immature, early-developing storage roots were comparatively more susceptible than older, fully developed storage roots. The high significant correlation between the storage root cross-section area and the cross-sectional lesion ratio suggests the presence of an unfavorable environment for C. fimbriata as the storage root develops. Incorporating applications of effective fungicides at transplanting and during early-storage root development when sweetpotato tissues are most susceptible to black rot infection may improve disease management efforts.


Assuntos
Ipomoea batatas , Ceratocystis , Estudos Transversais , Doenças das Plantas
11.
Biochim Biophys Acta Gen Subj ; 1865(5): 129843, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444726

RESUMO

Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops ß1-ß2 and ß2-ß3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.


Assuntos
Ceratocystis/metabolismo , Proteínas Fúngicas/metabolismo , Oligossacarídeos/metabolismo , Doenças das Plantas/microbiologia , Ceratocystis/química , Proteínas Fúngicas/química , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Plant Dis ; 105(5): 1365-1372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33079026

RESUMO

Black rot, caused by Ceratocystis fimbriata, is a devastating postharvest disease of sweetpotato that recently re-emerged in 2014. Although the disease is known to develop in storage and during export to overseas markets, little is known as to how pathogen dispersal occurs. This study was designed to investigate dump tank water as a means of dispersal through four different types of water treatments: inoculum concentration (0, 5, 5 × 101, 5 × 102, and 5 × 103 spores/ml), inoculum age (0, 24, 48, 96, and 144 h), water temperature (10°C, 23°C, 35°C, and 45°C), and presence of a water sanitizer (DryTec, SaniDate, FruitGard, and Selectrocide). Wounded and nonwounded sweetpotato storage roots were soaked in each water treatment for 20 min, stored at 29°C for a 14-day period, and rated for disease incidence every other day. Disease was observed in sweetpotato storage roots in all water treatments tested, except in the negative controls. Disease incidence decreased with both inoculum concentration and inoculum age, yet values of 16.26% and up to 50% were observed for roots exposed to 5 spores/ml and 144-h water treatments, respectively. Sanitizer products that contained a form of chlorine as the active ingredient significantly reduced disease incidence in storage roots when compared with control roots and roots exposed to a hydrogen-peroxide based product. Finally, no significant differences in final incidence were detected in wounded sweetpotato storage roots exposed to water treatments of any temperature, but a significant reduction in disease progression was observed in the 45°C treatment. These findings indicate that if packing line dump tanks are improperly managed, they can aid C. fimbriata dispersal through the build-up of inoculum as infected roots are unknowingly washed after storage. Chlorine-based sanitizers can reduce infection when applied after root washing and not in the presence of high organic matter typically found in dump tanks.


Assuntos
Ipomoea batatas , Ceratocystis , Temperatura , Água
13.
Environ Entomol ; 49(6): 1345-1354, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315073

RESUMO

Rapid 'Ohi'a Death (ROD) is a deadly disease that is threatening the native Hawaiian keystone tree species, 'ohi'a lehua (Metrosideros polymorpha Gaudich). Ambrosia beetles (Curculionidae: Scolytinae) and their frass are hypothesized to play a major role in the spread of ROD, although their ecological niches and frass production within trees and across the landscape are not well understood. We characterized the beetle communities and associated frass production from bolts (tree stem sections) representative of entire individual 'ohi'a trees from multiple locations across Hawai'i Island by rearing beetles and testing their frass for viable ROD-causing fungi. Additionally, we estimated frass production for three beetle species by weighing their frass over time. We found that Xyleborinus saxesenii (Ratzburg), Xyleborus affinis Eichhoff, Xyleborus ferrugineus (Fabricius), Xyleborus perforans (Wollaston), and Xyleborus simillimus Perkins were commonly found on ROD-infected 'ohi'a and each produced frass containing viable Ceratocystis propagules. The Hawai'i Island endemic beetle and the only native ambrosia beetle associated with 'ohi'a, X. simillimus, was limited to high elevations and appeared to utilize similar tree heights or niche dimensions as the invasive X. ferrugineus. Viable Ceratocystis propagules expelled in frass were found throughout entire tree bole sections as high as 13 m. Additionally, we found that X. ferrugineus produced over 4× more frass than X. simillimus. Our results indicate the ambrosia beetle community and their frass play an important role in the ROD pathosystem. This information may help with the development and implementation of management strategies to control the spread of the disease.


Assuntos
Besouros , Myrtaceae , Myrtales , Gorgulhos , Ambrosia , Animais , Ceratocystis , Hawaii
14.
Phytopathology ; 110(12): 1923-1933, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689905

RESUMO

The infection processes of Ceratocystis fimbriata BMPZ13 (BMPZ13) was elucidated on vegetative tissues of sweetpotato plants employing light and scanning electron microscopy. Vegetative tissues infected with C. fimbriata BMPZ13 by either wounding or nonwounding inoculation methods developed typical disease symptoms, establishing black rot in stems and necrosis on buds, young leaves, and stems of sprouts, in addition to wilt on leaves and shoot cuttings, typical of vascular associated diseases. The runner hyphae of C. fimbriata BMPZ13 formed from germinated conidia were able to directly penetrate the epidermal cuticle for initial infection and invade sweetpotato peltate glandular trichomes, specialized secretory structures to store and secrete metabolites. A two-step biotrophic phase was observed with nonwounding inoculation on leaves and stems, featuring both intercellular and intracellular invasive hyphae, with the latter found within living cells of the leaf epidermis. Subsequent to the biotrophic phase was a necrotrophic phase displaying cell death in infected leaves and veins. Additionally, this cell death was an iron-associated ferroptosis, supporting the notion that iron is involved in the necrotrophic phase of C. fimbriata BMPZ13 infection. Significantly, we establish that C. fimbriata employs a unique infection strategy: the targeting of peltate glandular trichomes. Collectively, our findings show that C. fimbriata is a plant fungal pathogen with a hemibiotrophic infection style in sweetpotato vegetative tissues.


Assuntos
Ascomicetos , Infecções , Ipomoea batatas , Ceratocystis , Humanos , Doenças das Plantas , Tricomas
15.
Fungal Genet Biol ; 143: 103433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652232

RESUMO

Ceratocystis fimbriata is a host specific fungal pathogen of sweet potato (Ipomoea batatas). The closely related species, C. manginecans, is an important pathogen of trees (e.g. Acacia mangium and Mangifera indica) but has never been isolated from tuber crops. The genetic factors that determine the host range and host specificity of these species have not been determined. The aim of this study was to compare the genomes of C. fimbriata and C. manginecans in order to identify species-specific genetic differences that could be associated with host specificity. This included whole-genome alignments as well as comparisons of gene content and transposable elements (TEs). The genomes of the two species were found to be very similar, sharing similar catalogues of CAZymes, peptidases and lipases. However, the genomes of the two species also varied, harbouring species-specific genes (e.g. small secreted effectors, nutrient processing proteins and stress response proteins). A portion of the TEs identified (17%) had a unique distribution in each species. Transposable elements appeared to have played a prominent role in the divergence of the two species because they were strongly associated with chromosomal translocations and inversions as well as with unique genomic regions containing species-specific genes. Two large effector clusters, with unique TEs in each species, were identified. These effectors displayed non-synonymous mutations and deletions, conserved within a species, and could serve as mutational hot-spots for the development of host specificity in the two species.


Assuntos
Ceratocystis/genética , Elementos de DNA Transponíveis/genética , Doenças das Plantas/genética , Adaptação Fisiológica/genética , Ceratocystis/patogenicidade , Genoma Fúngico/genética , Genômica , Adaptação ao Hospedeiro/genética , Ipomoea batatas/genética , Ipomoea batatas/microbiologia , Doenças das Plantas/microbiologia , Especificidade da Espécie
16.
Carbohydr Polym ; 245: 116574, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718651

RESUMO

The antifungal effects of oligochitosan (OCS) against Ceratocystis fimbriata that causes black rot disease in sweet potato and its apoptosis mechanism were evaluated. OCS restrained the mycelial growth and spores germination of C. fimbriata, and decreased the ergosterol content of cell membrane. Transmission electron microscopy observation and flow cytometry analysis revealed that OCS induced morphology changes with smaller size and increased granularity of C. fimbriata, which was the typical feature of apoptosis. To clarify the apoptosis mechanism induced by OCS, a series of apoptosis-related parameters were analyzed. Results showed that OCS induced reactive oxygen species accumulation, Ca2+ homeostasis dysregulation, mitochondrial dysfunction and metacaspase activation, coupled with hallmarks of apoptosis including phosphatidylserine externalization, DNA fragmentation, and nuclear condensation. In summary, OCS triggered apoptosis through a metacaspase-dependent mitochondrial pathway in C. fimbriata. These findings have important implications for the application of OCS to control pathogens in food and agriculture.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ceratocystis/enzimologia , Quitina/análogos & derivados , Proteínas Fúngicas/metabolismo , Mitocôndrias/enzimologia , Ceratocystis/efeitos dos fármacos , Quitina/farmacologia , Quitosana , Fragmentação do DNA/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/microbiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Oligossacarídeos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
17.
J Agric Food Chem ; 68(29): 7591-7600, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32585101

RESUMO

Black rot, caused by Ceratocystis fimbriata, is a destructive disease of sweet potatoes (Ipomoea batatas). In this study, a novel chitinase (IbChiA) was screened from sweet potatoes, which showed a remarkably higher expression level in resistant varieties than in susceptible ones after inoculation with C. fimbriata. Sequence analysis indicated that IbChiA belongs to family 19 class II extracellular chitinase with a MW of 26.3 kDa and pI of 5.96. Recombinant IbChiA, produced by Pichia pastoris, displayed antifungal activity and stability. IbChiA could restrain the mycelium extension of C. fimbriata. FDA/PI double staining combined with transmission electron microscopy observation revealed the remarkable fungicidal effect of IbChiA on the conidia of C. fimbriata. The disease symptoms on the surface of slices and tuberous roots of sweet potatoes were significantly reduced after treatment with IbChiA. These results indicated that IbChiA could be used as a potential biofungicide to replace chemical fungicides.


Assuntos
Quitinases/imunologia , Ipomoea batatas/enzimologia , Ipomoea batatas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Sequência de Aminoácidos , Ceratocystis/crescimento & desenvolvimento , Ceratocystis/fisiologia , Quitinases/química , Quitinases/genética , Ipomoea batatas/química , Doenças das Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
18.
Int J Biol Macromol ; 159: 995-1003, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439442

RESUMO

Iturin A is a natural antifungal agent that is widely used in the agriculture and food industries. In the present study, a new modified chitosan sub-micron, succinaldehydic acid (SAC) - chitosan (CS) system was synthesised by microwave irradiation and then as a carrier for capsulation of Iturin A (SAC-CS-IA). The structures of SAC-CS and SAC-CS-IA were characterised by SEM, NMR and FTIR. The size distribution suggested that the average size of SAC-CS and SAC-CS-IA was from 1.5 to 2.5 µm. An encapsulation efficiency of 92.02% under an adaptive pH (pH = 5) and time (5.5 h) was used. The study of release kinetics shows that about 80% of Iturin A was released in 25 days. An antifungal activity assay indicated that SAC-CS-IA exhibited higher antifungal activity against Ceratocystis fimbriata and Rhizopus strolonifer with 75.05 ± 3.24% and 80.54 ± 2.65%, respectively. The results indicate that the SAC-CS can improve the stability of IA on heat and pH with a wide range and tolerance most of enzymes. Actual tuber storage suggested that SAC-CS-IA can significantly inhibit pathogen fungal infection and reduce toxin product. Meanwhile, SAC-CS-IA could retain the water, starch, and soluble sugar contents. Low residue assay indicated that SAC-CS-IA could be used as an antifungal and anti-rotting agent in agriculture and food applications.


Assuntos
Antifúngicos/administração & dosagem , Cápsulas/química , Ceratocystis/efeitos dos fármacos , Quitosana/análogos & derivados , Peptídeos Cíclicos/administração & dosagem , Rhizopus/efeitos dos fármacos , Aldeídos/química , Antifúngicos/farmacologia , Liberação Controlada de Fármacos , Peptídeos Cíclicos/farmacologia
19.
BMC Genomics ; 21(1): 362, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408859

RESUMO

BACKGROUND: The taxonomic history of Ceratocystis, a genus in the Ceratocystidaceae, has been beset with questions and debate. This is due to many of the commonly used species recognition concepts (e.g., morphological and biological species concepts) providing different bases for interpretation of taxonomic boundaries. Species delineation in Ceratocystis primarily relied on genealogical concordance phylogenetic species recognition (GCPSR) using multiple standard molecular markers. RESULTS: Questions have arisen regarding the utility of these markers e.g., ITS, BT and TEF1-α due to evidence of intragenomic variation in the ITS, as well as genealogical incongruence, especially for isolates residing in a group referred to as the Latin-American clade (LAC) of the species. This study applied a phylogenomics approach to investigate the extent of phylogenetic incongruence in Ceratocystis. Phylogenomic analyses of a total of 1121 shared BUSCO genes revealed widespread incongruence within Ceratocystis, particularly within the LAC, which was typified by three equally represented topologies. Comparative analyses of the individual gene trees revealed evolutionary patterns indicative of hybridization. The maximum likelihood phylogenetic tree generated from the concatenated dataset comprised of 1069 shared BUSCO genes provided improved phylogenetic resolution suggesting the need for multiple gene markers in the phylogeny of Ceratocystis. CONCLUSION: The incongruence observed among single gene phylogenies in this study call into question the utility of single or a few molecular markers for species delineation. Although this study provides evidence of interspecific hybridization, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage. This study also highlights the utility of BUSCO genes as a set of multiple orthologous genes for phylogenomic studies.


Assuntos
Ceratocystis/classificação , Especiação Genética , Filogenia , Ceratocystis/genética , Evolução Molecular , Genes Fúngicos/genética , Genoma Fúngico/genética , Hibridização Genética , Análise de Sequência de DNA
20.
Fungal Genet Biol ; 137: 103332, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926322

RESUMO

Ceratocystis fimbriata is an important plant pathogen known to cause Ceratocystis Wilt (CW), a prevalent fungal disease known to affect Eucalyptus spp. plantations in Brazil. To better understand the molecular mechanisms related to pathogenicity in eucalyptus, we generated a high-quality assembly and annotation of the Ce. fimbriata LPF1912 isolate (LPF1912) genome, as well as the first transcriptome of LPF1912 from 16 eucalyptus clones at three infection incubation periods (12, 18, and 24 h). The LPF1912 genome assembly contains 805 scaffolds, totaling 31.8 Mb, with 43% of the genome estimated to be coding sequence comprised of 7,390 protein-coding genes of which 626 (8.5%) were classified as secreted proteins, 120 ribosomal RNAs, and 532 transfer RNAs. Comparative genomic analysis among three eucalyptus fungal pathogens (Ce. fimbriata, Ce. eucalypticola, and Calonectria pseudoreteaudii), showed high similarity in the proteome (21.81%) and secretome (52.01%) of LPF1912 and Ce. eucalypticola. GO annotation of pathogenicity-related genes of LPF1912 and Ce. eucalypticola, revealed enrichment in cell wall degrading enzymes (CWDEs), and lipid/cutin metabolism for Ca. pseudoreteaudii. Additionally, a transcriptome analysis between resistant and susceptible eucalyptus clones to CW infection indicated that a majority (11) of LPF1912 differentially expressed genes had GO terms associated with enzymatic functions, such as the polygalacturonase gene family, confirming the crucial role of CWDEs for Ce. fimbriata pathogenicity. Finally, our genomic and transcriptomic analysis approach provides a better understanding of the mechanisms involved in Ce. fimbriata pathogenesis, as well as a framework for further studies.


Assuntos
Ceratocystis/genética , Hypocreales/genética , Ascomicetos/genética , Ceratocystis/metabolismo , Eucalyptus/microbiologia , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Genômica/métodos , Filogenia , Doenças das Plantas/microbiologia , Proteoma/genética , Transcriptoma/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...