Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.420
Filtrar
2.
J Chromatogr A ; 1726: 464972, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744184

RESUMO

The effect of internal and external magnetic fields on the separation of antifungal drugs by centrifugal acceleration thin-layer chromatography was reported for the first time. External and internal magnetic fields were applied using neodymium magnets and CoFe2O4@SiO2 ferromagnetic nanoparticles. Separation of ketoconazole and clotrimazole was performed using a mobile phase consisting of n-hexane, ethyl acetate, ethanol, and ammonia (2.0:2.0:0.5:0.2, v/v). The influence of the magnetic field on the entire chromatographic system led to changes in the properties of the stationary and mobile phases and the analytes affecting the retention factor, shape, and width of the separated rings. The extent of this impact depended on the structure of the analyte and the type and intensity of the magnetic field. In the presence of the external magnetic field, there were more significant changes in the chromatographic parameters of the drugs, especially the width of the separated rings, and ketoconazole was more affected than clotrimazole. The changes are conceivably due to the effect of the magnetic field on the analyte distribution between the stationary and mobile phases, which is also caused by the possibility of the magnetic field affecting the viscosity, surface tension, and surface free energy between the stationary and mobile phases.


Assuntos
Antifúngicos , Cetoconazol , Campos Magnéticos , Cromatografia em Camada Fina/métodos , Antifúngicos/análise , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cetoconazol/química , Cetoconazol/análise , Clotrimazol/química , Clotrimazol/análise , Centrifugação/métodos , Dióxido de Silício/química
3.
Toxicol Lett ; 397: 34-41, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734219

RESUMO

Humantenmine, koumine, and gelsemine are three indole alkaloids found in the highly toxic plant Gelsemium. Humantenmine was the most toxic, followed by gelsemine and koumine. The aim of this study was to investigate and analyze the effects of these three substances on tissue distribution and toxicity in mice pretreated with the Cytochrome P450 3A4 (CYP3A4) inducer ketoconazole and the inhibitor rifampicin. The in vivo test results showed that the three alkaloids were absorbed rapidly and had the ability to penetrate the blood-brain barrier. At 5 min after intraperitoneal injection, the three alkaloids were widely distributed in various tissues and organs, the spleen and pancreas were the most distributed, and the content of all tissues decreased significantly at 20 min. Induction or inhibition of CYP3A4 in vivo can regulate the distribution and elimination effects of the three alkaloids in various tissues and organs. Additionally, induction of CYP3A4 can reduce the toxicity of humantenmine, and vice versa. Changes in CYP3A4 levels may account for the difference in toxicity of humantenmine. These findings provide a reliable and detailed dataset for drug interactions, tissue distribution, and toxicity studies of Gelsemium alkaloids.


Assuntos
Citocromo P-450 CYP3A , Gelsemium , Alcaloides Indólicos , Animais , Gelsemium/química , Citocromo P-450 CYP3A/metabolismo , Alcaloides Indólicos/toxicidade , Distribuição Tecidual , Masculino , Camundongos , Cetoconazol/toxicidade , Cetoconazol/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Alcaloides
4.
Talanta ; 276: 126248, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776770

RESUMO

Antifungal medications are important due to their potential application in cancer treatment either on their own or with traditional treatments. The mechanisms that prevent the effects of these medications and restrict their usage in cancer treatment are not completely understood. The evaluation and discrimination of the possible protective effects of the anti-apoptotic members of the Bcl-2 family of proteins, critical regulators of mitochondrial apoptosis, against antifungal drug-induced cell death has still scientific uncertainties that must be considered. Novel, simple, and reliable strategies are highly demanded to identify the biochemical signature of this phenomenon. However, the complex nature of cells poses challenges for the analysis of cellular biochemical changes or classification. In this study, for the first time, we investigated the probable protective activities of Bcl-2 and Mcl-1 proteins against cell damage induced by ketoconazole (KET) and fluconazole (FLU) antifungal drugs in a yeast model through surface-enhanced Raman spectroscopy (SERS) approach. The proposed SERS platform created robust Raman spectra with a high signal-to-noise ratio. The analysis of SERS spectral data via advanced unsupervised and supervised machine learning methods enabled unquestionable differentiation (100 %) in samples and biomolecular identification. Various SERS bands related to lipids and proteins observed in the analyses suggest that the expression of these anti-apoptotic proteins reduces oxidative biomolecule damage induced by the antifungals. Also, cell viability assay, Annexin V-FITC/PI double staining, and total oxidant and antioxidant status analyses were performed to support Raman measurements. We strongly believe that the proposed approach paves the way for the evaluation of various biochemical structures/changes in various cells.


Assuntos
Antifúngicos , Fluconazol , Cetoconazol , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Saccharomyces cerevisiae , Análise Espectral Raman , Cetoconazol/farmacologia , Antifúngicos/farmacologia , Análise Espectral Raman/métodos , Fluconazol/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/análise , Aprendizado de Máquina
5.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731409

RESUMO

As a powerful imidazole antifungal drug, ketoconazole's low solubility (0.017 mg/mL), together with its odor and irritation, limited its clinical applications. The inclusion complex of ketoconazole with randomly methylated ß-cyclodextrin was prepared by using an aqueous solution method after cyclodextrin selection through phase solubility studies, complexation methods, and condition selection through single factor and orthogonal strategies. The complex was confirmed by FTIR (Fourier-transform infrared spectroscopy), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), SEM (scanning electron microscope images), and NMR (Nuclear magnetic resonance) studies. Through complexation, the water solubility of ketoconazole in the complex was increased 17,000 times compared with that of ketoconazole alone, which is the best result so far for the ketoconazole water solubility study. In in vitro pharmacokinetic studies, ketoconazole in the complex can be 100% released in 75 min, and in in vivo pharmacokinetic studies in dogs, through the complexation, the Cmax was increased from 7.56 µg/mL to 13.58 µg/mL, and the AUC0~72 was increased from 22.69 µgh/mL to 50.19 µgh/mL, indicating that this ketoconazole complex can be used as a more efficient potential new anti-fungal drug.


Assuntos
Antifúngicos , Cetoconazol , Solubilidade , beta-Ciclodextrinas , Cetoconazol/química , Cetoconazol/farmacocinética , Cetoconazol/farmacologia , Cetoconazol/administração & dosagem , beta-Ciclodextrinas/química , Animais , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Antifúngicos/química , Cães , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Metilação
6.
Vet Dermatol ; 35(4): 375-385, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616572

RESUMO

BACKGROUND: Perianal fistulas are painful ulcers or sinus tracts that disproportionately affect German shepherd dogs and are proposed as a spontaneous animal model of fistulising Crohn's disease. OBJECTIVES: To characterise the rectal and cutaneous microbiota in German shepherd dogs with perianal fistulas and to investigate longitudinal shifts with lesion resolution during immunomodulatory therapy. ANIMALS: Eleven German shepherd dogs with perianal fistulas and 15 healthy German shepherd dogs. MATERIALS AND METHODS: Affected dogs were evaluated and swabbed at three visits, 30 days apart, while undergoing treatment with ciclosporin and ketoconazole. Healthy German shepherd dogs were contemporaneously sampled. Sites included the rectum, perianal skin and axilla. The microbiome was evaluated following sequencing of the V4 hypervariable region of the 16S ribosomal RNA (rRNA) gene. RESULTS: Alpha diversity was not significantly different between healthy and affected dogs at each of the three body sites (p > 0.5), yet rectal and perianal beta diversities from affected dogs differed significantly from those of healthy dogs at Day 0 (p = 0.004). Rectal and perianal relative abundance of Prevotella spp. increased and perianal Staphylococcus spp. relative abundance decreased in affected dogs over time, coincident with lesion resolution. CONCLUSIONS AND CLINICAL RELEVANCE: Changes in lesional cutaneous and rectal microbiota occur in German shepherd dogs with perianal fistulas and shift over time with lesion resolution during immunomodulatory therapy. Further investigations of the role of cutaneous and enteric microbiota in the pathogenesis of perianal fistulas, and whether manipulation of microbial populations may ameliorate disease, are needed.


Assuntos
Ciclosporina , Doenças do Cão , Cetoconazol , Fístula Retal , Animais , Cães , Ciclosporina/uso terapêutico , Ciclosporina/administração & dosagem , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Masculino , Cetoconazol/uso terapêutico , Cetoconazol/administração & dosagem , Feminino , Fístula Retal/veterinária , Fístula Retal/tratamento farmacológico , Fístula Retal/microbiologia , Estudos Longitudinais , Reto/microbiologia , Pele/microbiologia , Pele/patologia , Microbiota/efeitos dos fármacos
7.
J Mycol Med ; 34(2): 101475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479291

RESUMO

Malassezia pachydermatis is often reported as the causative agent of dermatitis in dogs. This study aims to evaluate the in vitro and in vivo antifungal activity of azoles and terbinafine (TRB), alone and in combination with the 8-hydroxyquinoline derivatives (8-HQs) clioquinol (CQL), 8-hydroxyquinoline-5-(n-4-chlorophenyl)sulfonamide (PH151), and 8-hydroxyquinoline-5-(n-4-methoxyphenyl)sulfonamide (PH153), against 16 M. pachydermatis isolates. Susceptibility to the drugs was evaluated by in vitro broth microdilution and time-kill assays. The Toll-deficient Drosophila melanogaster fly model was used to assess the efficacy of drugs in vivo. In vitro tests showed that ketoconazole (KTZ) was the most active drug, followed by TRB and CQL. The combinations itraconazole (ITZ)+CQL and ITZ+PH151 resulted in the highest percentages of synergism and none of the combinations resulted in antagonism. TRB showed the highest survival rates after seven days of treatment of the flies, followed by CQL and ITZ, whereas the evaluation of fungal burden of dead flies showed a greater fungicidal effect of azoles when compared to the other drugs. Here we showed for the first time that CQL is effective against M. pachydermatis and potentially interesting for the treatment of malasseziosis.


Assuntos
Antifúngicos , Azóis , Dermatomicoses , Drosophila melanogaster , Malassezia , Testes de Sensibilidade Microbiana , Animais , Antifúngicos/farmacologia , Malassezia/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Azóis/farmacologia , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/efeitos dos fármacos , Cães , Terbinafina/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Cetoconazol/farmacologia , Oxiquinolina/farmacologia , Sulfonamidas/farmacologia , Itraconazol/farmacologia , Clioquinol/farmacologia , Modelos Animais de Doenças
8.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 926-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482980

RESUMO

The first-generation tyrosine kinase inhibitor imatinib has revolutionized the development of targeted cancer therapy and remains among the frontline treatments, for example, against chronic myeloid leukemia. As a substrate of cytochrome P450 (CYP) 2C8, CYP3A4, and various transporters, imatinib is highly susceptible to drug-drug interactions (DDIs) when co-administered with corresponding perpetrator drugs. Additionally, imatinib and its main metabolite N-desmethyl imatinib (NDMI) act as inhibitors of CYP2C8, CYP2D6, and CYP3A4 affecting their own metabolism as well as the exposure of co-medications. This work presents the development of a parent-metabolite whole-body physiologically based pharmacokinetic (PBPK) model for imatinib and NDMI used for the investigation and prediction of different DDI scenarios centered around imatinib as both a victim and perpetrator drug. Model development was performed in PK-Sim® using a total of 60 plasma concentration-time profiles of imatinib and NDMI in healthy subjects and cancer patients. Metabolism of both compounds was integrated via CYP2C8 and CYP3A4, with imatinib additionally transported via P-glycoprotein. The subsequently developed DDI network demonstrated good predictive performance. DDIs involving imatinib and NDMI were simulated with perpetrator drugs rifampicin, ketoconazole, and gemfibrozil as well as victim drugs simvastatin and metoprolol. Overall, 12/12 predicted DDI area under the curve determined between first and last plasma concentration measurements (AUClast) ratios and 12/12 predicted DDI maximum plasma concentration (Cmax) ratios were within twofold of the respective observed ratios. Potential applications of the final model include model-informed drug development or the support of model-informed precision dosing.


Assuntos
Interações Medicamentosas , Mesilato de Imatinib , Modelos Biológicos , Humanos , Mesilato de Imatinib/farmacocinética , Mesilato de Imatinib/administração & dosagem , Citocromo P-450 CYP3A/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Masculino , Simulação por Computador , Adulto , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Feminino , Citocromo P-450 CYP2C8/metabolismo , Cetoconazol/farmacocinética , Cetoconazol/farmacologia , Pessoa de Meia-Idade , Rifampina/farmacocinética , Rifampina/administração & dosagem
9.
Skinmed ; 22(1): 67-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494619

RESUMO

A healthy 32-year-old woman presented to clinic with tender pruritic lesions of 2-month duration at the vulva and lesions for weeks on the shins. She was treated with topical corticosteroids and intravenous vancomycin without significant improvement. On examination, dozens of follicular hemorrhagic papulopustules were detected at the suprapubic area and vulva (Figure 1). Similar but less prominent lesions were observed on the shins as well. Biopsies of the vulva and shin revealed a follicular inflammatory infiltrate of neutrophils, histiocytes, and lymphocytes as well as fungal hyphae within the follicular infundibulum and hair shafts, consistent with Majocchi's granuloma (MG). Gram and Fite-Faraco staining, direct immunofluorescence, and bacterial culture were negative. Tissue culture grew Trichophyton mentagrophytes, which was identified using sequence analysis of the D1/D2 region of the 28s rDNA. Minimum inhibitory concentrations for terbinafine, ketoconazole, and itraconazole were determined, with terbinafine having the lowest concentration. Additional history revealed that shortly prior to commencement of her clinical manifestations, the patient had acquired a pet guinea pig with eruptions and hair loss (Figure 2). The patient was prescribed ketoconazole cream and terbinafine, 250 mg daily, with almost immediate improvement. Based on clinical response, the patient remained on terbinafine and ketoconazole cream for 6 months. Her skin remained clear 4 months after discontinuing all antifungals. Based on the results of patient's culture, a veterinarian treated her guinea pig successfully with systemic terbinafine and miconazole lotion.


Assuntos
Cetoconazol , Tinha , Trichophyton , Feminino , Humanos , Animais , Cobaias , Adulto , Terbinafina/uso terapêutico , Cetoconazol/uso terapêutico , Antifúngicos/uso terapêutico , Vulva
10.
J Cosmet Dermatol ; 23(6): 2078-2083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544350

RESUMO

OBJECTIVES: Malassezia species are common, clinically relevant, and lipid-dependent yeasts of humans. They are also the leading causes of the dandruff problem of humans, and the azoles are used primarily in their topical and systemic treatment. Resistance to azoles is an emerging problem among Malassezia sp., which indicates the need of new drug assessments that will be effective against dandruff and limit the use of azoles and other agents in treatment. Among them, the efficacy of various combinations of piroctone olamine and climbazole against Malassezia sp. is highly important. Here, we assessed the efficacies of various piroctone olamine and climbazole formulations against Malassezia sp. in comparison with ketoconazole. METHODS: A total of nine formulations were included in the study, where each formulation was prepared from different concentrations of piroctone olamine and climbazole and both. All formulations contained the same ingredients as water, surfactants, hair conditioning agents, and preservatives. Malassezia furfur CBS1878, Malassezia globosa CBS7874, and Malassezia sympodialis CBS9570 were tested for antifungal susceptibility of each formulation by agar diffusion method. Sizes of the inhibition zones were compared with standard medical shampoo containing 2% ketoconazole, and the data were analyzed by Dunnett's multiple-comparison test. RESULTS: For all Malassezia sp. strains, climbazole 0.5% and piroctone olamine/climbazole (0.1%/0.1% and 0.1%/0.5%) combinations were found to have the same effect as the medical shampoo containing 2% ketoconazole. Piroctone olamine/climbazole 1.0%/0.1% formulation showed the same efficacy as 2% ketoconazole on M. furfur and M. sympodialis, while 0.1%/0.5% formulation to only M. furfur. For M. globosa, none of the formulations tested were as effective as ketoconazole. CONCLUSION: The species distribution of Malassezia sp. varies depending on the anatomical location on the host. According to the results of this study, climbazole and piroctone olamine combinations seem to be promising options against the dandruff problem with their high antifungal/anti dandruff efficacy.


Assuntos
Antifúngicos , Caspa , Preparações para Cabelo , Cetoconazol , Malassezia , Malassezia/efeitos dos fármacos , Preparações para Cabelo/farmacologia , Humanos , Antifúngicos/farmacologia , Caspa/microbiologia , Caspa/tratamento farmacológico , Cetoconazol/farmacologia , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Combinação de Medicamentos , Etanolaminas , Piridonas
11.
J Chromatogr A ; 1718: 464724, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350351

RESUMO

In this work, two different multiple dual-mode (MDM) counter-current chromatography methods, conventional MDM and modified MDM elution modes, were compared for the chiral separation of the ketoconazole enantiomers. The biphasic solvent system which consisted of n-hexane: isobutyl acetate: 0.1 mol/L phosphate buffer (2:4:6, v/v) (pH = 8.5) was employed as stationary phase and mobile phase. And the hydroxypropyl-ß-cyclodextrin (HP-ß-CD) with a concentration of 100 mmol/L was dissolved in the phosphate buffer, as the chiral selector. Under two different methods, dual-mode (DM) elution was performed to determine the time of the transformed phase roles and multiple cycles were performed to isolate ketoconazole, respectively. The result indicated that the modified MDM elution had a significant improvement on the separation, increasing the resolution from 0.51 to 1.19, while the resolution was increased from 0.40 to 0.79 by the conventional MDM elution. Ultimately, baseline separation of ketoconazole enantiomers was essentially achieved by high-speed counter-current chromatography under optimized modified MDM separation conditions. The final recoveries of the two enantiomers, R-(K) and S-(K), were 92.5 % and 83.3 %, respectively, corresponding to enantiomeric excess values of 99.0 % and 97.0 %, as determined by HPLC.


Assuntos
beta-Ciclodextrinas , beta-Ciclodextrinas/química , Distribuição Contracorrente/métodos , Cetoconazol , 2-Hidroxipropil-beta-Ciclodextrina , Estereoisomerismo , Fosfatos
12.
Adv Sci (Weinh) ; 11(14): e2308027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308137

RESUMO

Hepatocellular carcinoma (HCC) is a form of malignancy with limited curative options available. To improve therapeutic outcomes, it is imperative to develop novel, potent therapeutic modalities. Ketoconazole (KET) has shown excellent therapeutic efficacy against HCC by eliciting apoptosis. However, its limited water solubility hampers its application in clinical treatment. Herein, a mitochondria-targeted chemo-photodynamic nanoplatform, CS@KET/P780 NPs, is designed using a nanoprecipitation strategy by integrating a newly synthesized mitochondria-targeted photosensitizer (P780) and chemotherapeutic agent KET coated with chondroitin sulfate (CS) to amplify HCC therapy. In this nanoplatform, CS confers tumor-targeted and subsequently pH-responsive drug delivery behavior by binding to glycoprotein CD44, leading to the release of P780 and KET. Mechanistically, following laser irradiation, P780 targets and destroys mitochondrial integrity, thus inducing apoptosis through the enhancement of reactive oxygen species (ROS) buildup. Meanwhile, KET-induced apoptosis synergistically enhances the anticancer effect of P780. In addition, tumor cells undergoing apoptosis can trigger immunogenic cell death (ICD) and a longer-term antitumor response by releasing tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs), which together contribute to improved therapeutic outcomes in HCC. Taken together, CS@KET/P780 NPs improve the bioavailability of KET and exhibit excellent therapeutic efficacy against HCC by exerting chemophototherapy and antitumor immunity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Cetoconazol , Sulfatos de Condroitina , Neoplasias Hepáticas/terapia , Imunoterapia
13.
Int J Biol Macromol ; 262(Pt 2): 130221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365159

RESUMO

The present study involves the isolation of cellulose nanofibers from pineapple crown waste by a combined alkali-acid treatment method. The extracted pineapple nanofibers were characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, high-resolution transmission electron microscopy, and dynamic light scattering. The extracted pineapple nanofibers were then incorporated in Carbopol 934P containing ketoconazole to prepare a ketoconazole-loaded pineapple nanofibrous gel. The prepared gel formulation was evaluated for viscosity, spreadability, extrudibility, pH, drug content, and texture profile analysis. The anticipated gel formulation was further evaluated by in vitro drug release (98.57 ± 0.58 %), ex vivo drug permeation, cytotoxicity, and histopathological studies. The permeation of the drug through skin determined by the ex-vivo diffusion study was found to be 38.27 % with a flux rate of 4.06 ± 0.26 µg/cm2/h. Further, the cytotoxicity study of pineapple nanofiber and ketoconazole-loaded nanofiber gel displayed no cytotoxic on healthy vero cells in the concentration range from 10 to 80 µg/ml. The histopathological analysis exhibited no signs of distress and inflammation. In conclusion, ketoconazole-loaded pineapple nanofiber gel could be considered as a promising delivery system for topical applications.


Assuntos
Ananas , Nanofibras , Animais , Chlorocebus aethiops , Cetoconazol/farmacologia , Nanofibras/química , Células Vero , Celulose
14.
Arch Biochem Biophys ; 753: 109919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307316

RESUMO

Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.


Assuntos
Antifúngicos , Cetoconazol , Antifúngicos/farmacologia , Cetoconazol/farmacologia , Bicamadas Lipídicas , Fosfatidilcolinas
15.
ACS Nano ; 18(6): 5180-5195, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299982

RESUMO

Fungal infection possesses the characteristics of high invasion depth and easy formation of a biofilm under the skin, which greatly hinders the treatment process. Here, traditional Chinese medicine moxa is carbonized and modified with zinc oxide (ZnO) nanosheets to synthesize carbonized moxa@ZnO (CMZ) with the dual response properties of yellow light (YL) and ultrasound (US) for synergistic antifungal therapy. CMZ with narrow bandgap can respond to long-wavelength YL that is highly safe and helpful for skin repair. Simultaneously, CMZ with a piezoelectric effect can further enhance the photocatalytic efficiency under the stimulation of US with high tissue penetration. Gene mechanism investigation indicates that when exposed to US and YL irradiation, CMZ-based therapy can adjust the expression of genes associated with fungal virulence, metabolic activity, mycelial growth and biofilm development, thus efficaciously eradicating planktonic Candida albicans (C. albicans) and mature biofilm. Importantly, despite the 1.00 cm thick tissue barrier, CMZ can rapidly eliminate 99.9% of C. albicans within 4 min, showing a satisfactory deep fungicidal efficacy. The in vivo therapeutic effect of this strategy is demonstrated in both open wound and deep cutaneous infection tests, speaking of dramatically better efficacy than the traditional fungicide ketoconazole (KTZ).


Assuntos
Micoses , Óxido de Zinco , Antifúngicos/farmacologia , Óxido de Zinco/farmacologia , Cetoconazol , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
16.
Clin Genitourin Cancer ; 22(2): 483-490.e5, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38296679

RESUMO

Castration resistant prostate cancer (CRPC) is a challenging subset of prostate cancer associated with an extensive metastatic profile and high mortality. Ketoconazole is a nonselective steroid 17α-hydroxylase/17,20 lyase (CYP17A1) inhibitor and is employed as a second line treatment option for CRPC with an established efficacy profile in patients. The aim of this study is to assess the efficacy of ketoconazole containing regimens for CRPC in terms of prostate specific antigen (PSA) decline rate using a systematic review and meta-analysis. In this review, an electronic search was carried out on PubMed, Cochrane CENTRAL, Scopus, and Google Scholar to find relevant literature. Random effects model was used to assess pooled PSA decline rate and 95% CIs. Publication bias was assessed using the funnel plot symmetry and one-tailed Egger's and Begg's test. In all cases, P-value <.05 was indicative of significant results. The review is registered with PROSPERO: CRD42023466536. A total of 483 articles were retrieved after database searching, out of which 23 studies (having a total of 1315 patients) were included in the review based on prespecified criteria. The PSA decline rate was reported in the 14 observational studies (having 964 patients) and 9 experimental studies (having 351 patients). Pooled results revealed that 48.6% (95% CI 43.1-54.2; P-value <.001; I2 = 73.24%) of participants achieved more than 50% decline in PSA (602/1315 participants). Sensitivity analysis using the leave-one-out method revealed no substantial change in pooled effect estimates; (Risk Ratio) RR 47.2% to RR 49.8% demonstrating the robustness of our results. There was no evidence of publication bias as assessed from the funnel plot symmetry. Ketoconazole containing regimens have shown moderate efficacy in high risk CRPC patients as demonstrated by the pooled results. Hence, a ketoconazole based chemotherapy can be added to patients' regimen if there is a persistent rise in PSA levels after androgen deprivation therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Cetoconazol/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Antagonistas de Androgênios/uso terapêutico
17.
Eur J Pharm Sci ; 194: 106689, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171419

RESUMO

Oxycodone is one of the most commonly used opioids to treat moderate to severe pain. It is metabolized mainly by CYP3A4 and CYP2D6, while only a small fraction of the dose is excreted unchanged into the urine. Oxymorphone, the metabolite primarily formed by CYP2D6, has a 40- to 60-fold higher mu-opioid receptor affinity than the parent compound. While CYP2D6-mediated gene-drug-interactions (GDIs) and drug-drug interactions (DDIs) are well-studied, they only account for a portion of the variability in oxycodone and oxymorphone exposure. The combined impact of CYP2D6-mediated GDIs and DDIs, CYP3A4-mediated DDIs, and UGT2B7 GDIs is not fully understood yet and hard to study in head-to-head clinical trials given the relatively large number of scenarios. Instead, we propose the use of a physiologically-based pharmacokinetic model that integrates available information on oxycodone's metabolism to characterize and predict the impact of DDIs and GDIs on the exposure of oxycodone and its major, pharmacologically-active metabolite oxymorphone. To this end, we first developed and verified a PBPK model for oxycodone and its metabolites using published clinical data. The verified model was then applied to determine the dose-exposure relationship of oxycodone and oxymorphone stratified by CYP2D6 and UGT2B7 phenotypes respectively, and administered perpetrators of CYP-based drug interactions. Our simulations demonstrate that the combination of CYP2D6 UM and a UGT2B7Y (268) mutation may lead to a 2.3-fold increase in oxymorphone exposure compared to individuals who are phenotyped as CYP2D6 NM / UGT2B7 NM. The extent of oxymorphone exposure increases up to 3.2-fold in individuals concurrently taking CYP3A4 inhibitors, such as ketoconazole. Inhibition of the CYP3A4 pathway results in a relative increase in the partial metabolic clearance of oxycodone to oxymorphone. Oxymorphone is impacted to a higher extent by GDIs and DDIs than oxycodone. We predict oxymorphone exposure to be highest in CYP2D6 UMs/UGT2B7 PMs in the presence of ketoconazole (strong CYP3A4 index inhibitor) and lowest in CYP2D6 PMs/UGT2B7 NMs in the presence of rifampicin (strong CYP3A4 index inducer) covering a 55-fold exposure range.


Assuntos
Oxicodona , Oximorfona , Humanos , Oxicodona/farmacocinética , Oximorfona/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Cetoconazol/farmacologia , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Indutores do Citocromo P-450 CYP3A , Inibidores de Dissociação do Nucleotídeo Guanina , Glucuronosiltransferase/genética
18.
Drug Metab Dispos ; 52(2): 80-85, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071551

RESUMO

Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.


Assuntos
Citocromo P-450 CYP3A , Cetoconazol , Humanos , Animais , Camundongos , Vincristina/toxicidade , Vincristina/metabolismo , Vincristina/uso terapêutico , Citocromo P-450 CYP3A/genética , Cetoconazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Genótipo , Azóis
19.
Eur J Pharm Sci ; 192: 106639, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967658

RESUMO

Our previous work shows that ß-lactoglobulin-stabilized amorphous solid dispersion (ASD) loaded with 70 % indomethacin remains stable for more than 12 months. The stability is probably due to hydrogen bond networks spread throughout the ASD, facilitated by the indomethacin which has both hydrogen donors and acceptors. To investigate the stabilization mechanisms further, here we tested five other drug molecules, including two without any hydrogen bond donors. A combination of experimental techniques (differential scanning calorimetry, X-ray power diffraction) and molecular dynamics simulations was used to find the maximum drug loadings for ASDs with furosemide, griseofulvin, ibuprofen, ketoconazole and rifaximin. This approach revealed the underlying stabilization factors and the capacity of computer simulations to predict ASD stability. We searched the ASD models for crystalline patterns, and analyzed diffusivity of the drug molecules and hydrogen bond formation. ASDs loaded with rifaximin and ketoconazole remained stable for at least 12 months, even at 90 % drug loading, whereas stable drug loadings for furosemide, griseofulvin and ibuprofen were at a maximum of 70, 50 and 40 %, respectively. Steric confinement and hydrogen bonding to the proteins were the most important stabilization mechanisms at low drug loadings (≤ 40 %). Inter-drug hydrogen bond networks (including those with induced donors), ionic interactions, and a high Tg of the drug molecule were additional factors stabilizing the ASDs at drug loading greater than 40 %.


Assuntos
Ibuprofeno , Cetoconazol , Ibuprofeno/química , Furosemida , Lactoglobulinas , Griseofulvina , Rifaximina , Indometacina/química , Solubilidade , Composição de Medicamentos/métodos
20.
Infect Disord Drug Targets ; 24(2): e201023222469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37881078

RESUMO

BACKGROUND: The concern about the global spread of resistant malaria has made the researchers not focus only on the treatment of established infections but relatively more on the prevention of the disease. OBJECTIVE: This study evaluates the chemopreventive activity of ketoconazole in a murine malarial model. METHOD: Five out of seven groups of mice were pretreated for five days with proguanil (PRG), sulfadoxine/ pyrimethamine (SP), 10, 20, and 40 mg/kg body weight (b.w) of ketoconazole (KET10, KET20, and KET40), before being infected (on the sixth day) with Plasmodium berghei. Two other groups were infected-not-treated (INT) and not-infected-nor-treated (NINT). At 72 hours postinfection, five out of ten mice in each group were sacrificed to assess parasitemia, chemoprevention, hematologic, hepatic, and renal parameters. The remaining mice were observed for 28 days to determine their mean survival day post-infection (SDPI). RESULTS: All ketoconazole groups, except KET10, demonstrated 100% chemoprevention and significantly higher mean SDPI (p<0.001) in relation to INT (negative control). There was no significant difference in the mean SDPI observed in KET20 in relation to PRG or NINT (healthy control). A dose-related increase (p<0.01) in the mean plasma urea was observed when ketoconazole groups were compared to one another: KET10 versus KET20 (p<0.01) and KET20 versus KET40 (p<0.01). Sulfadoxine/pyrimethamine demonstrated significantly reduced mean plasma urea (p<0.001) and creatinine (p<0.05) in relation to INT and NINT, respectively. While PRG demonstrated significantly higher mean red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) in relation to INT. CONCLUSION: Ketoconazole possesses prophylactic antimalarial activity with associated dose-related renal impairment. Sulfadoxine/pyrimethamine demonstrated renoprotective potentials, while PRG prevented malaria-associated anemia.


Assuntos
Anemia , Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Pirimetamina/uso terapêutico , Proguanil/uso terapêutico , Sulfadoxina/uso terapêutico , Cetoconazol/uso terapêutico , Antimaláricos/uso terapêutico , Malária/complicações , Malária/tratamento farmacológico , Malária/prevenção & controle , Anemia/tratamento farmacológico , Anemia/prevenção & controle , Rim , Ureia/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...