Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genes (Basel) ; 13(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741829

RESUMO

Actin and tubulin proteins from Trichomonas vaginalis are crucial for morphogenesis and mitosis. This parasite has 10 and 11 genes coding bonafide actin and tubulin proteins, respectively. Hence, the goal of this work was to analyze these actin and tubulin genes, their expression at the mRNA and protein levels, and their parasite localization in intercellular interaction and cytokinesis. Representative bonafide actin (tvact1) and tubulin (tvtubα1) genes were cloned into and expressed in Escherichia coli. The recombinant proteins TvACT1r and TvTUBα1r were affinity purified and used as antigens to produce polyclonal antibodies. These antibodies were used in 1DE and 2DE WB and indirect immunofluorescence assays (IFA). By IFA, actin was detected as a ring on the periphery of ameboid, ovoid, and cold-induced cyst-like parasites, on pseudopods of amoeboid parasites, and in cytoplasmic extensions (filopodia) in cell-cell interactions. Tubulin was detected in the axostyle, flagellum, undulating membrane, and paradesmose during mitosis. Paradesmose was observed by IFA mainly during cytokinesis. By scanning electron microscopy, a tubulin-containing nanotubular structure similar to the tunneling nanotubes (TNTs) was also detected in the last stage of cytokinesis. In conclusion, actin and tubulin are multigene families differentially expressed that play important roles in intercellular interactions and cytokinesis.


Assuntos
Trichomonas vaginalis , Tubulina (Proteína) , Actinas/genética , Actinas/metabolismo , Anticorpos , Citocinese/genética , Mitose/genética , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-34798937

RESUMO

Fumes generated in the welding process are composed of micrometric and nanometric particles that form when metal fumes condense. The International Agency for Research on Cancer established that many compounds derived from the welding process are carcinogenic to humans. Still, there are few studies related to the role of genetic polymorphisms. This work aimed to analyze the influence of OGG1 Ser326Cys, XRCC1 Arg280His, XRCC1 Arg194Thr, XRCC1 Arg399Gln, XRCC3 Thr241Met, GSTM1, and GSTT1 gene polymorphisms on DNA damage of 98 subjects occupationally exposed to welding fumes and 100 non exposed individuals. The results showed that individuals exposed to welding fumes with XRCC3 Thr241Thr, XRCC3 Thr241Met, and GSTM1 null genotypes demonstrated a significantly higher micronucleus frequency in lymphocytes. In contrast, individuals with XRCC1 Arg399Gln and XRCC1 Gln399Gln genotypes had significant levels of NPBs. OGG1 326 Ser/Cys, OGG1 326 Cys/Cys, XRCC1 194Arg/Thr, XRCC1 194Thr/Thr, and GSTT1 null genotypes exhibited significantly higher apoptotic values. Also, XRCC1 194Arg/Trp, XRCC1 194Thr/Thr, and GSTM1 null genotype carriers had higher necrotic levels compared to XRCC1 194Arg/Arg and GSTM1 nonnull carriers. Compositional analysis revealed the presence of iron, manganese, silicon as well as particles smaller than 2 µm that adhere to each other and form agglomerates. These results may be associated with a mixture of components, such as nitrogen dioxide, carbon monoxide, and metallic fumes, leading to significant DNA damage and cell death processes. These findings demonstrated the importance of the association between individual susceptibility and DNA damage levels due to occupational exposure to welding fumes; and constitute one of the first studies carried out in exposed workers from Colombia.


Assuntos
Citocinese , Dano ao DNA , Ferreiros , Exposição Ocupacional , Colômbia , DNA Glicosilases/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Genótipo , Glutationa Transferase/genética , Humanos , Exposição Ocupacional/efeitos adversos , Polimorfismo Genético , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
3.
Ecotoxicol Environ Saf ; 212: 111935, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578128

RESUMO

During the welding activities many compounds are released, several of these cause oxidative stress and inflammation and some are considered carcinogenic, in fact the International Agency for Research on Cancer established that welding fumes are carcinogenic to humans. The aim of the present study was to analyze the cytotoxic and genotoxic potential of exposure to welding fumes and to determine concentrations of metals in blood and urine of occupationally exposed workers. We included 98 welders and 100 non-exposed individuals. Our results show significant increase in the frequency of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD) and necrotic cells (NECR) in cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, as well as in the telomere length (TL) of the exposed individuals with respect to the non-exposed group. In the analysis of the concentrations of inorganic elements using PIXE method, were found higher concentrations of Cr, Fe and Cu in the urine, and Cr, Fe, Mg, Al, S, and Mn in the blood in the exposed group compared to the non-exposed group. A significant correlation was observed between MN and age and between NPB and years of exposure. Additionally, we found a significant correlation for TL in relation to MN, NPB, age and years of exposure in the exposed group. Interestingly, a significant correlation between MN and the increase in the concentration of Mg, S, Fe and Cu in blood samples of the exposed group, and between MN and Cr, Fe, Ni and Cu in urine. Thus, our findings may be associated with oxidative and inflammatory damage processes generated by the components contained in welding fumes, suggesting a high occupational risk in welding workers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bioensaio , Testes para Micronúcleos/métodos , Exposição Ocupacional/análise , Telômero , Biomarcadores/análise , Citocinese , Dano ao DNA , Humanos , Linfócitos , Estresse Oxidativo , Soldagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-33551097

RESUMO

The pharmacological potential of drugs must be evaluated to establish their potential therapeutic benefits and side effects. This evaluation includes assessment of the effects of hepatic enzymes that catalyse their metabolic activation. Previously, our research group synthesized and characterized a set of synthetic 3-alkyl pyridine alkaloid (3-APA) analogues that cause in vitro cytotoxic, genotoxic, and mutagenic effects in various human cancer cell lines. The present study aimed to evaluate these activities with the two most promising synthetic 3-APAs (3-APA 1 and 3-APA 2) against cell lines derived from breast cancer (MDA-MB-231), ovarian cancer (TOV-21 G) and lung fibroblasts (WI-26-VA4) with and without metabolic activation (S9 fraction). The cytotoxicity of the compounds was evaluated employing MTT and clonogenic assays. In addition, comet assays, γH2AX immunocytochemistry labelling assays and cytokinesis-block micronucleus tests were carried out to evaluate the potential of these compounds to induce chromosomal damage. The results obtained in the MTT assay showed that compound 3-APA 2 exhibited high selectivity index (SI) values (ranging between 21.0 and 92.6). In addition, the cytotoxicity of the compounds was clearly enhanced by metabolic activation. Moreover, both compounds were genotoxic and induced double-strand breaks in DNA and chromosomal lesions with and without S9. The cancer cell lines tested showed higher genotoxic sensitivity to the compounds than did the non-tumour cell line used as a reference. The genotoxic and mutagenic effects of the compounds were potentiated in experiments with metabolic activation. The data obtained in this study indicate that compound 3-APA 2 is more active against the human cancer cell lines tested, both with and without metabolic activation, and can therefore be considered a candidate drug to treat human ovarian and breast cancer.


Assuntos
Ativação Metabólica , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Citocinese/efeitos dos fármacos , Dano ao DNA , Mutagênicos/farmacologia , Neoplasias/patologia , Ensaio Cometa , Humanos , Testes para Micronúcleos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células Tumorais Cultivadas
5.
Biotech Histochem ; 96(1): 60-66, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32436746

RESUMO

Radiotherapy (RT) is an important treatment for cervical cancer. The quality of life of patients undergoing RT may be compromised during and following treatment by nausea, diarrhea, vomiting, burns, erythema and fistula. Cytokinesis-block micronucleus (CBMN) assays may be useful for predicting adverse effects of RT for cancer. The CBMN test is easy to perform and is reproducible for screening subjects exposed to ionizing radiation. We investigated the use of the frequency of micronuclei (MN) from peripheral blood samples, irradiated in vitro, as a possible biomarker to predict the side effects of RT in patients with cervical cancer. We used 10 patients with cervical cancer receiving RT and chemotherapy. We found a strong relation between the frequency of MN and the appearance of acute side effects of RT for cervical cancer. We suggest that the methodology presented here may be useful for predicting side effects of RT for patients affected by cervical cancer and who have undergone chemotherapy.


Assuntos
Neoplasias do Colo do Útero , Citocinese , Feminino , Humanos , Linfócitos , Testes para Micronúcleos , Qualidade de Vida , Radiação Ionizante , Neoplasias do Colo do Útero/radioterapia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32928373

RESUMO

Organophosphate (OP) pesticides are biotransformed into metabolites such as dialkylphosphates (DAPs). We have evaluated the genotoxicity of malathion and its metabolite dimethylthiophosphate (DMTP) in the human hepatic cell lines HepG2 and WRL-68 and in peripheral blood mononuclear cells (PBMC). In the Cytokinesis-Block Micronucleus assay (CBMN), malathion and DMTP increased the frequencies of micronuclei (MN) and nucleoplasmic bridges (NPB). Malathion was primarily clastogenic whereas DMTP was aneuploidogenic. When HepG2 or WRL-68 cells were treated with DMTP in the presence of sulconazole, a non-specific cytochrome P450 inhibitor, MN frequency was reduced, indicating that DMTP genotoxicity requires P450-cataliyzed metabolism.


Assuntos
Citocinese/efeitos dos fármacos , Malation/farmacologia , Testes de Mutagenicidade , Mutagênicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Malation/toxicidade , Mutagênicos/toxicidade , Praguicidas/farmacologia , Praguicidas/toxicidade
7.
Arch Toxicol ; 94(8): 2625-2636, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474618

RESUMO

Metallic nanoparticles such as silver (Ag NPs) and iron oxide (Fe3O4 NPs) nanoparticles are high production volume materials due to their applications in various consumer products, and in nanomedicine. However, their inherent toxicities to human cells remain a challenge. The present study was aimed at combining lipidomics data with common phenotypically-based toxicological assays to gain better understanding into cellular response to Ag NPs and Fe3O4 NPs exposure. HepG2 cells were exposed to different concentrations (3.125, 6.25, 12.5, 25, 50 and 100 µg/ml) of the nanoparticles for 24 h, after which they were assayed for toxic effects using toxicological assays like cytotoxicity, mutagenicity, apoptosis and oxidative stress. The cell membrane phospholipid profile of the cells was also performed using shotgun tandem mass spectrometry. The results showed that nanoparticles exposure resulted in concentration-dependent cytotoxicity as well as reduced cytokinesis-block proliferation index (CBPI). Also, there was an increase in the production of ROS and superoxide anions in exposed cells compared to the negative control. The lipidomics data revealed that nanoparticles exposure caused a modulation of the phospholipidome of the cells. A total of 155 lipid species were identified, out of which the fold changes of 23 were significant. The high number of differentially changed phosphatidylcholine species could be an indication that inflammation is one of the major mechanisms of toxicity of the nanoparticles to the cells.


Assuntos
Hepatócitos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Compostos de Prata/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipidômica , Necrose , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Superóxidos/metabolismo , Espectrometria de Massas em Tandem
8.
Proc Natl Acad Sci U S A ; 117(12): 6580-6589, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152126

RESUMO

Polarity decisions are central to many processes, including mitosis and chemotropism. In Saccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.


Assuntos
Polaridade Celular , Quimiotaxia , Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Citocinese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Cell Biol ; 218(12): 3903-3911, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690620

RESUMO

Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.


Assuntos
Actinas/metabolismo , Polaridade Celular , Mitose , Fuso Acromático/metabolismo , Animais , Divisão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Citocinese , Citoesqueleto/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Neoplasias/metabolismo , Fagócitos/citologia , Transdução de Sinais , Células-Tronco/citologia
10.
In Vivo ; 33(6): 1807-1811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662506

RESUMO

BACKGROUND/AIM: Car painting is considered an occupational exposure job with high risk for cancer development, due to the association with harmful chemicals and mutagens. This study aimed to profile car painters occupationally exposed and determine its association with DNA damage and genomic instability. MATERIALS AND METHODS: We collected a questionnaire and buccal cells of 74 individuals (37 car painters and 37 non-exposed workers) paired by age, alcohol and smoking habits. The number of pyknotic cells, karyolitic cells, karyorrhetic cells, condensed chromatin, binucleated cells, basal cells, differentiated cells (DIFF), micronucleated cells and nuclear buds were evaluated using the Buccal Micronucleus Cytome Assay protocol. RESULTS: A statistically significant increase was observed in all parameters (p<0.05) in the exposed group, but DIFF showed a statistically significant decrease (p<0.001), compared to the control group. CONCLUSION: In association with the poor work environment and lack of personal and collective protective equipment, occupational exposure of car painters leads to high DNA damage, genomic instability and alterations in cellular kinetics.


Assuntos
Citocinese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Mutagênicos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Pintura/efeitos adversos , Adulto , Automóveis , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Citocinese/genética , Dano ao DNA/genética , Humanos , Masculino , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos/métodos , Mucosa Bucal/efeitos dos fármacos , Neoplasias/induzido quimicamente , Neoplasias/genética
11.
Einstein (Sao Paulo) ; 17(4): eAO4742, 2019 Sep 09.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31508660

RESUMO

OBJECTIVE: To evaluate the induction of DNA damage in peripheral blood mononuclear cells of patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea. METHODS: The study subjects were divided into two groups: one group of 22 patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea, and a Control Group composed of 24 patients with sickle cell disease who were not treated with hydroxyurea. Peripheral blood samples were submitted to peripheral blood mononuclear cell isolation to assess genotoxicity by the cytokinesis-block micronucleus cytome assay, in which DNA damage biomarkers - micronuclei, nucleoplasmic bridges and nuclear buds - were counted. RESULTS: Patients with sickle cell disease treated with hydroxyurea had a mean age of 25.4 years, whereas patients with sickle cell disease not treated with hydroxyurea had a mean age of 17.6 years. The mean dose of hydroxyurea used by the patients was 12.8mg/kg/day, for a mean period of 44 months. The mean micronucleus frequency per 1,000 cells of 8.591±1.568 was observed in the Hydroxyurea Group and 10.040±1.003 in the Control Group. The mean frequency of nucleoplasmic bridges per 1,000 cells and nuclear buds per 1,000 cells for the hydroxyurea and Control Groups were 0.4545±0.1707 versus 0.5833±0.2078, and 0.8182±0.2430 versus 0.9583±0.1853, respectively. There was no statistically significant difference between groups. CONCLUSION: In the study population, patients with sickle cell disease treated with the standard dose of hydroxyurea treatment did not show evidence of DNA damage induction.


Assuntos
Anemia Falciforme/genética , Dano ao DNA/efeitos dos fármacos , Hidroxiureia/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Adolescente , Adulto , Anemia Falciforme/tratamento farmacológico , Criança , Pré-Escolar , Citocinese , Dano ao DNA/genética , Feminino , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/efeitos adversos , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Adulto Jovem
12.
PLoS Negl Trop Dis ; 13(3): e0007256, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897087

RESUMO

Aurora kinases constitute a family of enzymes that play a key role during metazoan cells division, being involved in events like centrosome maturation and division, chromatin condensation, mitotic spindle assembly, control of kinetochore-microtubule attachments, and cytokinesis initiation. In this work, three Aurora kinase homologues were identified in Trypanosoma cruzi (TcAUK1, -2 and -3), a protozoan parasite of the Kinetoplastida Class. The genomic organization of these enzymes was fully analyzed, demonstrating that TcAUK1 is a single-copy gene, TcAUK2 coding sequence is present in two different forms (short and long) and TcAUK3 is a multi-copy gene. The three TcAUK genes are actively expressed in the different life cycle forms of T. cruzi (amastigotes, trypomastigotes and epimastigotes). TcAUK1 showed a changing localization along the cell cycle of the proliferating epimastigote form: at interphase it is located at the extremes of the kinetoplast while in mitosis it is detected at the cell nucleus, in close association with the mitotic spindle. Overexpression of TcAUK1 in epimastigotes leaded to a delay in the G2/M phases of the cell cycle due a retarded beginning of kinetoplast duplication. By immunofluorescence, we found that when it was overexpressed TcAUK1 lost its localization at the extremes of the kinetoplast during interphase, being observed inside the cell nucleus throughout the entire cell cycle. In summary, TcAUK1 appears to be a functional homologue of human Aurora B kinase, as it is related to mitotic spindle assembling and chromosome segregation. Moreover, TcAUK1 also seems to play a role during the initiation of kinetoplast duplication, a novel role described for this protein.


Assuntos
Aurora Quinases/metabolismo , Estágios do Ciclo de Vida , Mitocôndrias/fisiologia , Trypanosoma cruzi/enzimologia , Aurora Quinases/genética , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos , Citocinese , Humanos , Mitose , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fuso Acromático/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/fisiologia
13.
Sci Rep ; 9(1): 192, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655631

RESUMO

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Proteínas HMGB/metabolismo , Trypanosoma cruzi , Pontos de Checagem do Ciclo Celular , Nucléolo Celular , Citocinese , Proteínas HMGB/farmacologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma cruzi/ultraestrutura , Virulência
14.
Int J Med Microbiol ; 309(2): 130-142, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30665874

RESUMO

Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.


Assuntos
Antiprotozoários/farmacologia , Giardia lamblia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Trofozoítos/efeitos dos fármacos , Células CACO-2 , Citocinese/efeitos dos fármacos , Giardia lamblia/citologia , Giardia lamblia/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Microscopia , Microscopia Eletrônica , Testes de Sensibilidade Parasitária , Trofozoítos/citologia , Trofozoítos/crescimento & desenvolvimento
15.
J Environ Sci Health B ; 54(2): 147-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30668218

RESUMO

The effect of doramectin (DOR) was tested on two experimental somatic bovine cells in vitro: peripheral lymphocytes (PL) and cumulus cells (CC). The cytotoxicity and genotoxicity of DOR were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, single cell gel electrophoresis assay (SCGE) and cytokinesis-block micronucleus cytome (CBMN Cyt) assay. Both cells were treated with three concentrations of DOR (20, 40, 60 ng mL-1) for 24 h. The results obtained from PL demonstrated that DOR was able to induce cytotoxic effect and DNA damage with all concentrations tested. Additionally, DOR increased micronuclei (MNi) frequency and nuclear buds (NBuds) with 20, 40, 60 ng mL-1, and nucleoplasmic bridges (NPBs) only with 40 ng mL-1. On the other hand, the three concentrations of DOR were not able to induce cytotoxic effect and DNA damage using SCGE in the bovine CC. Nevertheless, the two higher concentrations of DOR (20, 40 µg mL-1) significantly increased the frequency of micronucleus formation in bovine CC. These results represent the first experimental evidence of genotoxic and cytotoxic effects exerted by DOR on bovine PL and CC.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Ivermectina/análogos & derivados , Linfócitos/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Citocinese , Dano ao DNA/efeitos dos fármacos , Eletroforese/métodos , Feminino , Humanos , Ivermectina/administração & dosagem , Ivermectina/toxicidade , Testes para Micronúcleos , Análise de Célula Única/métodos , Testes de Toxicidade/métodos , Drogas Veterinárias/toxicidade
16.
Environ Sci Pollut Res Int ; 26(3): 2998-3005, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506381

RESUMO

The in vitro effect of enrofloxacin (EFZ) was tested on two experimental somatic bovine cells in vitro: peripheral lymphocytes (PLs) and cumulus cells (CCs). The cytotoxicity and genotoxicity of this veterinary antibiotic were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, single-cell gel electrophoresis (SCGE) assay, and cytokinesis-block micronucleus cytome (CBMN cyt) assay. Cells were treated during 24 h, and three concentrations were tested (50 µg/mL, 100 µg/mL, 150 µg/mL). When EFZ was tested in PLs, the results demonstrated that the antibiotic was able to induce cell death and DNA damage with all concentrations. In addition, 50 µg/mL and 100 µg/mL EFZ increased frequencies of micronuclei (MNi). On the other hand, the highest EFZ concentration occasioned cellular cytotoxicity in CCs as evidenced by mitochondrial activity alterations. Nevertheless, EFZ was not able to induce DNA damage and MNi in CCs. These results represent the first experimental evidence of genotoxic and cytotoxic effects exerted by EFZ in bovine PLs and CCs.


Assuntos
Antibacterianos/toxicidade , Células do Cúmulo/efeitos dos fármacos , Enrofloxacina/toxicidade , Linfócitos/efeitos dos fármacos , Animais , Bovinos , Ensaio Cometa , Citocinese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Testes para Micronúcleos , Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade/métodos
17.
Drug Chem Toxicol ; 42(4): 343-348, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29199475

RESUMO

Ribavirin is an important component of the treatment for hepatitis C virus (HCV) infection and, in combination with the new direct-acting antiviral (DAA) agents, comprises the major current therapeutic regimens. This study evaluated the cytotoxicity and chromosomal instability induced by ribavirin using the in vitro cytokinesis-block micronucleus cytome (CBMN-Cyt) assay in two cell lines with different expression levels of drug-metabolizing enzymes: human hepatocellular carcinoma cells (HepG2) and Chinese hamster ovary (CHO-K1) cells. HepG2 cells were treated with nine concentrations (from 15.3 µg/ml to 3.9 mg/ml) and CHO-K1 cells were exposed to eight concentrations (from 15.3 µg/ml to 1.9 mg/ml) of ribavirin for 24 h. Ribavirin inhibited cell proliferation in both cell lines, but at different concentrations: 3.9 mg/ml in HepG2 and 244.2 µg/ml in CHO-K1 cells. No significant differences were observed regarding aspects of cell death in HepG2 and CHO-K1 cells, reflecting the absence of cytotoxic effects associated to ribavirin. Ribavirin did not increase the frequency of nucleoplasmic bridges (NPBs) and nuclear bud (NBUD). However, when compared to the negative control, a significant increase in micronuclei (MNi) frequency was observed in both cell lines. However, chromosomal instability was induced by higher concentrations of ribavirin in HepG2 cells (from 61.1 to 976.8 µg/ml), compared with CHO-K1 cells (15.3 and 30.5 µg/ml). These results demonstrate the potential of ribavirin to promote chromosomal instability, and suggest that cells with different expressions of drug-metabolizing enzymes show different susceptibility to ribavirin effects.


Assuntos
Antivirais/toxicidade , Proliferação de Células/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Ribavirina/toxicidade , Animais , Antivirais/metabolismo , Apoptose/efeitos dos fármacos , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Inativação Metabólica , Testes para Micronúcleos , Ribavirina/metabolismo
18.
Einstein (Säo Paulo) ; 17(4): eAO4742, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1019812

RESUMO

ABSTRACT Objective To evaluate the induction of DNA damage in peripheral blood mononuclear cells of patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea. Methods The study subjects were divided into two groups: one group of 22 patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea, and a Control Group composed of 24 patients with sickle cell disease who were not treated with hydroxyurea. Peripheral blood samples were submitted to peripheral blood mononuclear cell isolation to assess genotoxicity by the cytokinesis-block micronucleus cytome assay, in which DNA damage biomarkers - micronuclei, nucleoplasmic bridges and nuclear buds - were counted. Results Patients with sickle cell disease treated with hydroxyurea had a mean age of 25.4 years, whereas patients with sickle cell disease not treated with hydroxyurea had a mean age of 17.6 years. The mean dose of hydroxyurea used by the patients was 12.8mg/kg/day, for a mean period of 44 months. The mean micronucleus frequency per 1,000 cells of 8.591±1.568 was observed in the Hydroxyurea Group and 10.040±1.003 in the Control Group. The mean frequency of nucleoplasmic bridges per 1,000 cells and nuclear buds per 1,000 cells for the hydroxyurea and Control Groups were 0.4545±0.1707 versus 0.5833±0.2078, and 0.8182±0.2430 versus 0.9583±0.1853, respectively. There was no statistically significant difference between groups. Conclusion In the study population, patients with sickle cell disease treated with the standard dose of hydroxyurea treatment did not show evidence of DNA damage induction.


RESUMO Objetivo Avaliar o efeito da indução de danos ao DNA em células monocelulares do sangue periférico de pacientes com doença falciforme, genótipos SS e SC, tratados com hidroxiureia. Métodos Os sujeitos da pesquisa foram divididos em dois grupos: um de 22 pacientes com doença falciforme genótipos SS e SC tratados com hidroxiureia, e o outro controle, composto por 24 pacientes com doença falciforme que não eram tratados com o fármaco. As amostras de sangue periférico foram submetidas ao isolamento de células mononucleares do sangue periférico para avaliação da genotoxicidade pelo ensaio de micronúcleo citoma com bloqueio da citocinese, tendo sido quantificados os biomarcadores de danos ao DNA - micronúcleos, pontes nucleoplasmáticas e brotamento nuclear. Resultados Os pacientes com doença falciforme tratados com hidroxiureia apresentaram média de idade de 25,4 anos, enquanto aqueles com doença falciforme não tratados com hidroxiureia tiveram média de idade de 17,6 anos. A dose média de hidroxiureia utilizada pelos pacientes foi de 12,8mg/kg/dia, por período médio de 44 meses. A frequência média de micronúcleos por 1.000 células de 8,591±1,568 foi observada no Grupo Hidroxiureia e de 10,040±1,003 no Grupo Controle. Adicionalmente, a frequência média de pontes nucleoplasmáticas por 1.000 células e brotamento nuclear por 1.000 células para o Grupo Hidroxiureia e Controle foi de 0,4545±0,1707 versus 0,5833±0,2078, e de 0,8182±0,2430 versus 0,9583±0,1853, respectivamente. Não houve diferença estatisticamente significativa entre os grupos. Conclusão Na população estudada de pacientes com doença falciforme com tratamento em dose padrão de hidroxiureia, não houve evidência de indução de danos ao DNA.


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto , Adulto Jovem , Dano ao DNA/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Hidroxiureia/farmacologia , Anemia Falciforme/genética , Dano ao DNA/genética , Testes para Micronúcleos , Inibidores da Síntese de Ácido Nucleico/efeitos adversos , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Citocinese , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Anemia Falciforme/tratamento farmacológico , Pessoa de Meia-Idade , Testes de Mutagenicidade , Mutação/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30483479

RESUMO

Gti1/Pac2 transcription factors occur exclusively in fungi and their roles vary according to species, including regulating morphological transition and virulence, mating and secondary metabolism. Many of these functions are important for fungal pathogenesis. We therefore hypothesized that one of the two proteins of this family in Cryptococcus neoformans, a major pathogen of humans, would also control virulence-associated cellular processes. Elimination of this protein in C. neoformans results in reduced polysaccharide capsule expression and defective cytokinesis and growth at 37°C. The mutant loses virulence in a mouse model of cryptococcal infection and retains only partial virulence in the Galleria mellonella alternative model at 30°C. We performed RNA-Seq experiments on the mutant and found abolished transcription of genes that, in combination, are known to account for all the observed phenotypes. The protein has been named Required for cytokinesis and virulence 1 (Rcv1).


Assuntos
Criptococose/patologia , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Citocinese , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Lepidópteros , Camundongos , Polissacarídeos/metabolismo , Análise de Sequência de RNA , Temperatura , Fatores de Transcrição/genética , Virulência
20.
Sci Rep ; 8(1): 11627, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072701

RESUMO

There is no safe and efficacious vaccine against human leishmaniasis available and live attenuated vaccines have been used as a prophylactic alternative against the disease. In order to obtain an attenuated Leishmania parasite for vaccine purposes, we generated L. infantum KHARON1 (KH1) null mutants (ΔLikh1). This gene was previously associated with growth defects in L. mexicana. ΔLikh1 was obtained and confirmed by PCR, qPCR and Southern blot. We also generate a KH1 complemented line with the introduction of episomal copies of KH1. Although ΔLikh1 promastigote forms exhibited a growth pattern similar to the wild-type line, they differ in morphology without affecting parasite viability. L. infantum KH1-deficient amastigotes were unable to sustain experimental infection in macrophages, forming multinucleate cells which was confirmed by in vivo attenuation phenotype. The cell cycle analysis of ΔLikh1 amastigotes showed arrested cells at G2/M phase. ΔLikh1-immunized mice presented reduced parasite burden upon challenging with virulent L. infantum, when compared to naïve mice. An effect associated with increased Li SLA-specific IgG serum levels and IL-17 production. Thus, ΔLikh1 parasites present an infective-attenuated phenotype due to a cytokinesis defect, whereas it induces immunity against visceral leishmaniasis in mouse model, being a candidate for antileishmanial vaccine purposes.


Assuntos
Citocinese , Leishmania infantum , Leishmaniose Visceral , Mutação , Animais , Citocinese/genética , Citocinese/imunologia , Modelos Animais de Doenças , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/imunologia , Humanos , Leishmania infantum/genética , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/imunologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/prevenção & controle , Pontos de Checagem da Fase M do Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA