Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.566
Filtrar
1.
Environ Sci Pollut Res Int ; 31(20): 29525-29535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575819

RESUMO

Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.


Assuntos
Biodegradação Ambiental , Cladosporium , Fluoroquinolonas , Poluentes Químicos da Água , Cladosporium/metabolismo , Fluoroquinolonas/farmacologia , Fluoroquinolonas/metabolismo , Poluentes Químicos da Água/metabolismo , Aquicultura , Antibacterianos/farmacologia , Sedimentos Geológicos/microbiologia , Animais , Peixe-Zebra
2.
Phytochemistry ; 222: 114073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565420

RESUMO

Two undescribed cladosporol derivatives, cladosporols J-K (1-2), and three previously unreported spirobisnaphthalenes, urnucratins D-F (3-5), as well as eleven known cladosporols (6-16), were characterized from Cladosporium cladosporioides (Cladosporiaceae), a common plant pathogen isolated from the skin of Chinese toad. Cladosporols J-K (1-2) with a single double bond have been rarely reported, while urnucratins D-F (3-5) featured an unusual benzoquinone bisnaphthospiroether skeleton, contributing to an expanding category of undiscovered natural products. Their structures and absolute configurations were determined using extensive spectroscopic methods, including NMR, HRESIMS analyses, X-ray single crystal diffraction, as well as through experimental ECD analyses. Biological assays revealed that compounds 1 and 2 exhibited inhibitory activity against A549 cells, with IC50 values of 30.11 ± 3.29 and 34.32 ± 2.66 µM, respectively.


Assuntos
Cladosporium , Naftalenos , Cladosporium/química , Humanos , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Células A549 , Compostos de Espiro/química , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos
3.
Sci Rep ; 14(1): 8351, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594512

RESUMO

Plastic accumulation is a severe threat to the environment due to its resistivity to thermal, mechanical and biological processes. In recent years, microbial degradation of plastic waste disposal is of interest because of its eco-friendly nature. In this study, a total of 33 fungi were isolated from the plastisphere and out of which 28 fungal species showed halo zone of clearance in agarized LDPE media. The fungus showing highest zone of clearance was further used to evaluate its degradation potential. Based on morphological and molecular technique, the fungus was identified as Cladosporium sphaerospermum. The biodegradation of LDPE by C. sphaerospermum was evaluated by various methods. The exposure of LDPE with C. sphaerospermum resulted in weight loss (15.23%) in seven days, higher reduction rate (0.0224/day) and lower half-life (30.93 days). FTIR analysis showed changes in functional group and increased carbonyl index in LDPE treated with C. sphaerospermum. SEMimages evidenced the formation of pits, surface aberrations and grooves on the LDPE film treated with the fungus whereas the untreated control LDPE film showed no change. AFM analysis confirmed the surface changes and roughness in fungus treated LDPE film. This might be due to the extracellular lignolytic enzymes secreted by C. sphaerospermum grown on LDPE. The degradation of polyethylene by Short chain alkanes such as dodecane, hexasiloxane and silane were identified in the extract of fungus incubated with LDPE film through GC-MS analysis which might be due to the degradation of LDPE film by C. sphaerospermum. This was the first report on the LDPE degradation by C. sphaerospermum in very short duration which enables green scavenging of plastic wastes.


Assuntos
Cladosporium , Polietileno , Polietileno/metabolismo , Biodegradação Ambiental
4.
Extremophiles ; 28(2): 20, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493412

RESUMO

We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.


Assuntos
Ascomicetos , Regiões Antárticas , Cladosporium , Sedimentos Geológicos
5.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445906

RESUMO

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Assuntos
Hidrolases de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudos Prospectivos , Biodegradação Ambiental , Poliésteres/metabolismo , Plásticos
6.
J Agric Food Chem ; 72(14): 7991-8005, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38544458

RESUMO

The biotransformation of patchouli alcohol by Cladosporium cladosporioides afforded 31 products, including 21 new ones (1-3, 5, 6, 8-14, and 17-25). Their structures were determined by extensive spectroscopic data analysis (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, ROESY, and HRESIMS), and the absolute configuration of compounds 1, 2, 8, 9, and 17 was determined by single-crystal X-ray diffraction using Cu Kα radiation. Structurally, compounds 21-24 were patchoulol-type norsesquiterpenoids without Me-12. Among them, a Δ3(4) double bond existed in compounds 21 and 22; a three-membered ring was formed between C-4, C-5, and C-6 in compound 23; an epoxy moiety appeared between C-3 and C-4 in compound 24. Furthermore, the biotransformation products 9, 10, 12, and 25 showed potent anti-influenza virus activity with EC50 values of 2.11, 7.94, 20.87, and 3.45 µM, respectively.


Assuntos
Sesquiterpenos , Sesquiterpenos/química , Cladosporium/química , Biotransformação
7.
Steroids ; 205: 109392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452910

RESUMO

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Assuntos
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
8.
Environ Microbiol ; 26(3): e16613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509764

RESUMO

Raspberry production is under threat from the emerging fungal pathogenic genus Cladosporium. We used amplicon-sequencing, coupled with qPCR, to investigate how fruit age, fruit location within a polytunnel, polytunnel location and sampling date affected the fruit epiphytic microbiome. Fruit age was the most important factor impacting the fungal microbiome, followed by sampling date and polytunnel location. In contrast, polytunnel location and fruit age were important factors impacting the bacterial microbiome composition, followed by the sampling date. The within-tunnel location had a small significant effect on the fungal microbiome and no effect on the bacterial microbiome. As fruit ripened, fungal diversity increased and the bacterial diversity decreased. Cladosporium was the most abundant fungus of the fruit epiphytic microbiome, accounting for nearly 44% of all fungal sequences. Rotorod air samplers were used to study how the concentration of airborne Cladosporium inoculum (quantified by qPCR) varied between location (inside and outside the polytunnel) and time (daytime vs. nighttime). Quantified Cladosporium DNA was significantly higher during the day than the night and inside the polytunnel than the outside. This study demonstrated the dynamic nature of epiphytic raspberry fruit microbiomes and airborne Cladosporium inoculum within polytunnels, which will impact disease risks on raspberry fruit.


Assuntos
Cladosporium , Rubus , Cladosporium/genética , Rubus/microbiologia , Frutas/microbiologia
9.
BMC Microbiol ; 24(1): 78, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459502

RESUMO

BACKGROUND AND OBJECTIVES: Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY: The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS: The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION: The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.


Assuntos
Anti-Infecciosos , Cladosporium , Nanopartículas Metálicas , Nanocompostos , Selênio , Humanos , Prata/farmacologia , Prata/química , Selênio/farmacologia , Amido/química , Peróxido de Hidrogênio/farmacologia , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
10.
Diagn Pathol ; 19(1): 45, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424618

RESUMO

BACKGROUND: Fungal infection incidental detection is a common encounter in cytopathology practices. Detection of the fungal organisms and awareness of the morphological features are challenges for the cytopathologist. CASE PRESENTATION: We report a case of incidental detection of a fungal organism in a 67-year-old male patient with complaints of bilateral elbow joint swellings. Cytology was done and showed a fungal organism (Cladosporium sps.). CONCLUSION: Fine needle aspiration cytology (FNAC) along with Rapid on-site evaluation (ROSE) is a rapid, minimally invasive technique used for the diagnosis and detection of various fungi / parasites leading to early and definitive treatment.


Assuntos
Cladosporium , Citodiagnóstico , Masculino , Humanos , Idoso , Biópsia por Agulha Fina/métodos
11.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338931

RESUMO

Cladosporium, a genus of ascomycete fungi in the Dematiaceae family, is primarily recognized as a widespread environmental saprotrophic fungus or plant endophyte. Further research has shown that the genus is distributed in various environments, particularly in marine ecosystems, such as coral reefs, mangroves and the polar region. Cladosporium, especially the marine-derived Cladosporium, is a highly resourceful group of fungi whose natural products have garnered attention due to their diverse chemical structures and biological activities, as well as their potential as sources of novel leads to compounds for drug production. This review covers the sources, distribution, bioactivities, biosynthesis and structural characteristics of compounds isolated from Cladosporium in the period between January 2000 and December 2022, and conducts a comparative analysis of the Cladosporium isolated compounds derived from marine and terrestrial sources. Our results reveal that 34% of Cladosporium-derived natural products are reported for the first time. And 71.79% of the first reported compounds were isolated from marine-derived Cladosporium. Cladosporium-derived compounds exhibit diverse skeletal chemical structures, concentrating in the categories of polyketides (48.47%), alkaloids (19.21%), steroids and terpenoids (17.03%). Over half of the natural products isolated from Cladosporium have been found to have various biological activities, including cytotoxic, antibacterial, antiviral, antifungal and enzyme-inhibitory activities. These findings testify to the tremendous potential of Cladosporium, especially the marine-derived Cladosporium, to yield novel bioactive natural products, providing a structural foundation for the development of new drugs.


Assuntos
Produtos Biológicos , Cladosporium , Produtos Biológicos/farmacologia , Ecossistema , Estudos Prospectivos , Fungos
12.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211970

RESUMO

AIMS: To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS: Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS: Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.


Assuntos
Cladosporium , Óleos Voláteis , Rosa , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia , Mostardeira , Óleos de Plantas/farmacologia
13.
J Hazard Mater ; 466: 133620, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286050

RESUMO

Biogenic Mn oxides (BMOs), the main component of natural Mn oxides, closely relate to Cd in sediment. However, the immobilization behavior of Cd in sediments by BMOs is currently unclear. This study explores the role of BMO produced by the Mn-oxidizing fungus Cladosporium sp. XM01 in mediating the Cd immobilization and its biological response in sediment. A comparison is made with those of a chemical Mn oxide (CMO, triclinic birnessite). After 45 d of remediation, the results showed that the application of BMO reduced the extractable Cd by 32.20-64.40% based on the TCLP (toxicity characteristic leaching procedure) and by 26.16-51.43% based on the PBET (physiologically based extraction test). Additionally, BMO was more effective at immobilizing Cd than CMO in sediments. The BCR (Community Bureau of Reference) extraction results suggested that BMO converted some acid-soluble components (20.63-33.23%) of Cd into residual components (9.40-20.68%). Moreover, the urease and catalase activity gradually increased within the first 25 days and then stabilized after applying BMO. Microbial community analysis revealed that the addition of a high-dose BMO was more conducive to increasing microbial abundance and biodiversity. This study verifies that BMO is a low-cost, high-efficiency, and eco-friendly material for immobilizing Cd in sediment.


Assuntos
Cádmio , Cladosporium , Óxidos
14.
BMC Biol ; 22(1): 25, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281938

RESUMO

BACKGROUND: Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS: Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS: Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.


Assuntos
Ascomicetos , Solanum lycopersicum , Solanum lycopersicum/genética , Elementos de DNA Transponíveis/genética , Genes Fúngicos , Cladosporium/genética , Cladosporium/metabolismo , Plantas/metabolismo , Cromossomos/metabolismo , Nucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
16.
Nat Prod Res ; 38(4): 594-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36938638

RESUMO

Two new compounds (R)-6-((8S)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (1) and (R)-6-((8R)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (2), together with four known compounds were isolated from the marine-derived fungus Cladosporium halotolerans FS702. The structures of these compounds were determined on the basis of extensive spectroscopic analysis including 1D/2D NMR, IR, UV, HRESIMS, ECD calculations as well as the modified Mosher's method. Cytotoxic assay results showed that compound 2 had significant cytotoxic activity against SF-268, MCF-7, HepG-2, and A549 cells lines with IC50 values of 0.16, 0.47, 0.33 and 0.23 µM, respectively.


Assuntos
Antineoplásicos , Pironas , Linhagem Celular Tumoral , Pironas/farmacologia , Antineoplásicos/química , Fungos/química , Cladosporium/química , Estrutura Molecular
17.
Braz J Microbiol ; 54(4): 3021-3031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880564

RESUMO

Caves are underground and natural environments mainly found in rocky terrain. Caves have a very specific microclimate, which benefits the occurrence of specific fungi. In recent studies, researchers have observed that caves harbour a great diversity of fungi. However, studies on fungal diversity in Brazilian caves are still incipient. In September 2019, airborne spore and soil samples were collected from the Monte Cristo cave, in the Southern Espinhaço Range, Diamantina, Minas Gerais state, Brazil. Two Cladosporium single-spore isolates, among other genera, were obtained from these samples. This study aimed to characterise these two fungal isolates based on their DNA sequence data and morphology. Phylogenetic analyses of the rDNA-ITS, ACT and TEF1-α loci revealed that the isolates belonged to the Cladosporium cladosporioides species complex. Both isolates did not cluster with any known species and were formally described and named herein as C. diamantinense and C. speluncae. This study presents taxonomic novelties and contributes to the knowledge about the fungal diversity in Brazilian caves.


Assuntos
Cladosporium , Brasil , Cladosporium/genética , Filogenia , DNA Ribossômico
18.
Sci Rep ; 13(1): 15505, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726386

RESUMO

An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.


Assuntos
Cladosporium , Percepção de Quorum , Humanos , Simulação de Acoplamento Molecular , Antibacterianos , Simulação de Dinâmica Molecular
19.
Sci Total Environ ; 905: 167285, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748608

RESUMO

The study is aimed at determining the potential spatiotemporal risk of the co-occurrence of airborne pollen and fungal spores high concentrations in different bio-climatic zones in Europe. Birch, grass, mugwort, ragweed, olive pollen and Alternaria and Cladosporium fungal spores were investigated at 16 sites in Europe, in 2005-2019. In Central and northern Europe, pollen and fungal spore seasons mainly overlap in June and July, while in South Europe, the highest pollen concentrations occur frequently outside of the spore seasons. In the coldest climate, no allergy thresholds were exceeded simultaneously by two spore or pollen taxa, while in the warmest climate most of the days with at least two pollen taxa exceeding threshold values were observed. The annual air temperature amplitude seems to be the main bioclimatic factor influencing the accumulation of days in which Alternaria and Cladosporium spores simultaneously exceed allergy thresholds. The phenomenon of co-occurrence of airborne allergen concentrations gets increasingly common in Europe and is proposed to be present on other continents, especially in temperate climate.


Assuntos
Alérgenos , Hipersensibilidade , Esporos Fúngicos , Pólen , Estações do Ano , Europa (Continente) , Cladosporium , Alternaria , Microbiologia do Ar
20.
Clin Exp Allergy ; 53(12): 1256-1267, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748858

RESUMO

BACKGROUND: Outdoor Alternaria and Cladosporium spores are ubiquitous. Few studies have assessed their impact on asthma hospitalizations providing conflicting results, mainly focused on vulnerable paediatric populations. We aimed to study the impact of outdoor Alternaria and Cladosporium concentrations on acute hospitalizations in the Capital Region of Denmark. METHODS: This is a bi-directional case-crossover study with 26 years of national registry data at individual level on acute asthma hospitalizations and daily average data on Alternaria and Cladosporium, pollen (Artemisia, Poaceae), maximal temperature, and air pollution. Conditional logistic regression models were applied to assess the associations. Concentration quartiles at lag 0 were used for categorizing the exposure. RESULTS: For lags 0-2, the odds of hospitalization were significantly higher for both Alternaria and Cladosporium at concentration quartile 2-4 compared with quartile 1. When stratified for age and sex, odds of hospitalization at Alternaria quartiles 2-4 were significantly higher in males below 40 years at lag 0-2, and at lag 0 in females (18-30 years), while quartiles 2-4 of Cladosporium concentrations were associated with significantly higher odds in boys (0-17 years) at lag 1-3, males (18-39 years) at lag 0-1, females (18-39 years) at lag 1-2, males (40-64 years) at lag 0-2, females (40-64 years) at lag 0 and 2, in seniors (65+ years) male at lag 1-2 and female at lag 0-1. The effect of Alternaria varied significantly depending on the level of Cladosporium (p < .0001). CONCLUSION: Ambient Alternaria and Cladosporium spores can induce asthma hospitalizations. Males are more susceptible to both genera. Males and females under age 40 years are more susceptible to Alternaria.


Assuntos
Alternaria , Asma , Humanos , Masculino , Criança , Feminino , Adulto , Cladosporium , Estudos Cross-Over , Esporos Fúngicos , Asma/epidemiologia , Asma/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...