Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.120
Filtrar
1.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955327

RESUMO

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Estações do Ano , Clima Tropical , Animais , Biodiversidade , Panamá , Oceano Atlântico , Oceano Pacífico , Invertebrados/fisiologia
2.
PLoS One ; 19(7): e0306174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968313

RESUMO

A long-standing key issue for examining the relationships between biodiversity and ecosystem functioning (BEF), such as forest productivity, is whether ecosystem functions are influenced by the total number of species or the properties of a few key species. Compared with controlled ecosystem experiments, the BEF relationships in secondary forest remain unclear, as do the effects of common species richness and rare species richness on the variation in ecosystem functions. To address this issue, we conducted field surveys at five sampling sites (1 ha each) with subtropical secondary evergreen broad-leaved forest vegetation. We found (1) a positive correlation between species richness and standing aboveground biomass (AGB); (2) that common species were primarily responsible for the distribution patterns of species abundance and dominance; although they accounted for approximately 25% of the total species richness on average, they represented 86-91% of species abundance and 88-97% of species dominance; and (3) that common species richness could explain much more of the variation in AGB than total species richness (common species plus rare species) at both the site and plot scales. Because rare species and common species were not equivalent in their ability to predict productivity in the biodiversity-ecosystem productivity model, redundant information should be eliminated to obtain more accurate results. Our study suggested that woody plant species richness and productivity relationship in subtropical forest ecosystem can be explained and predicted by a few common species.


Assuntos
Biodiversidade , Biomassa , Florestas , Clima Tropical , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Especificidade da Espécie , Plantas/classificação , Ecossistema , Madeira
4.
Environ Monit Assess ; 196(8): 727, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995471

RESUMO

The present study provides an assessment of the distribution of key Non-Timber Forest Product species in India, namely Aegle marmelos (L.) Correa, Buchanania lanzan Spreng., Madhuca longifolia (J. Koenig ex L.) J. F. Macbr., Phyllanthus emblica L. and Terminalia bellirica (Gaertn.) Roxb. The suitable habitat was analyzed under current climate scenarios and subsequently, the future distribution (2050s and 2070s) was mapped under RCP 2.6 and 8.5 scenarios, along with the past distribution (mid-Holocene, ~ 6000 cal year BP) using the MaxEnt species distribution model. The distribution of all species is primarily driven by key bioclimatic factors, including annual precipitation (Bio_12), mean annual temperature (Bio_1), isothermality (Bio_3) and precipitation of the coldest quarter (Bio_19). The results indicate that the present distribution of these species is mainly centred in the Western Ghats regions, Central Highlands, North-eastern India and Siwalik hills. The current study suggests that under the future climate change, the suitable habitat for A. marmelos and T. bellirica is expected to increase while for B. lanzan, M. longifolia and P. emblica, it is projected to decline. A. marmelos and T. bellirica are anticipated to exhibit resilience to future climate changes and are expected to be minimally affected, while B. lanzan, M. longifolia and P. emblica are highly sensitive to high temperature and alteration in rainfall pattern expected under future climate changes. The projections of habitat suitability areas can be used as a valuable foundation for developing conservation and restoration strategies aimed at alleviating the climate change impacts on NTFP species.


Assuntos
Mudança Climática , Florestas , Clima Tropical , Índia , Ecossistema , Monitoramento Ambiental , Árvores , Conservação dos Recursos Naturais
5.
BMC Plant Biol ; 24(1): 638, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971728

RESUMO

BACKGROUND: Drought periods are major evolutionary triggers of wood anatomical adaptive variation in Lower Tropical Montane Cloud Forests tree species. We tested the influence of historical drought events on the effects of ecological stress memory on latewood width and xylem vessel traits in two relict hickory species (Carya palmeri and Carya myristiciformis) from central-eastern Mexico. We hypothesized that latewood width would decrease during historical drought years, establishing correlations between growth and water stress conditions, and that moisture deficit during past tree growth between successive drought events, would impact on wood anatomical features. We analyzed latewood anatomical traits that developed during historical drought and pre- and post-drought years in both species. RESULTS: We found that repeated periods of hydric stress left climatic signatures for annual latewood growth and xylem vessel traits that are essential for hydric adaptation in tropical montane hickory species. CONCLUSIONS: Our results demonstrate the existence of cause‒effect relationships in wood anatomical architecture and highlight the ecological stress memory linked with historical drought events. Thus, combined time-series analysis of latewood width and xylem vessel traits is a powerful tool for understanding the ecological behavior of hickory species.


Assuntos
Secas , Madeira , México , Madeira/anatomia & histologia , Madeira/fisiologia , Madeira/crescimento & desenvolvimento , Estresse Fisiológico , Xilema/fisiologia , Xilema/anatomia & histologia , Clima Tropical , Árvores/fisiologia , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Fagales/anatomia & histologia , Fagales/fisiologia , Adaptação Fisiológica
6.
Environ Monit Assess ; 196(8): 730, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001932

RESUMO

Tropical semiarid regions are naturally prone to environmental damage. Human activity can worsen this situation. To understand how human actions affect the ecosystem, plan land use effectively, and establish targeted management practices, assessing environmental vulnerability is crucial. This study focuses on a sub-basin receiving water transfers from the São Francisco River in Brazil's semiarid region. Here, we map and evaluate how land use and occupation alter natural vulnerability. We also propose zoning strategies to support water resource management and implement sustainable development policies in the region. To achieve this, we conducted an integrated analysis of physical factors (soil types, geology, climate, vegetation, and landforms) and spatial land-use data using geographic information systems (GIS) and map algebra techniques. Map algebra allowed us to combine these various datasets within the GIS environment, enabling the creation of maps that synthesize both natural and environmental vulnerability across the study area. Following analysis of these vulnerability maps, our findings reveal a high level of vulnerability. The areas with high to very high degrees of natural vulnerability coincide with the places that have high slopes, high altitudes, Lithic Neosols, and thick vegetation. Furthermore, the interaction between environmental factors and human activity exacerbates vulnerability. Based on the environmental vulnerability assessment, we defined four environmental management zones. These zones require distinct protection measures and management approaches. As a method to potentially improve the basin's vulnerability scenario, soil conservation measures are recommended. This approach is highly relevant for managing land in tropical semiarid regions and, with adaptations to specific regional factors, can be applied globally.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Sistemas de Informação Geográfica , Clima Tropical , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais/métodos , Brasil , Ecossistema , Rios , Humanos
7.
J Med Virol ; 96(7): e29797, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988215

RESUMO

Temperature and humidity are studied in the context of seasonal infections in temperate and tropical zones, but the relationship between viral trends and climate variables in temperate subtropical zones remains underexplored. Our retrospective study analyzes respiratory pathogen incidence and its correlation with climate data in a subtropical zone. Retrospective observational study at Moinhos de Vento Hospital, South Brazil, aiming to assess seasonal trends in respiratory pathogens, correlating them with climate data. The study included patients of all ages from various healthcare settings, with data collected between April 2022 and July 2023. Biological samples were analyzed for 24 pathogens using polymerase chain reaction and hybridization techniques; demographic variables were also collected. The data was analyzed descriptively and graphically. Spearman tests and Poisson regression were used as correlation tests. Tests were clustered according to all pathogens, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, rhinovirus, and respiratory syncytial virus (RSV). Between April 2022 and July 2023, 3329 tests showed a 71.6% positivity rate. Rhinovirus and RSV predominated, exhibiting seasonal patterns. Temperature was inversely correlated with the viruses, notably rhinovirus, but SARS-CoV-2 was positively correlated. Air humidity was positively correlated with all pathogens, RSV, rhinovirus, and atmospheric pressure with all pathogens and rhinovirus. Our results showed statistically significant correlations, with modest effect sizes. Our study did not evaluate causation effects. Despite the correlation between climate and respiratory pathogens, our work suggests additional factors influencing transmission dynamics. Our findings underscore the complex interplay between climate and respiratory infections in subtropical climates.


Assuntos
COVID-19 , Umidade , Estações do Ano , Temperatura , Humanos , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Brasil/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Criança , Adolescente , Pré-Escolar , Idoso , Adulto Jovem , Lactente , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Clima , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Clima Tropical , Recém-Nascido , Rhinovirus/genética , Rhinovirus/isolamento & purificação , Incidência , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Idoso de 80 Anos ou mais
8.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990398

RESUMO

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão , Glycine max , Rúmen , Clima Tropical , Animais , Bovinos/sangue , Bovinos/fisiologia , Bovinos/metabolismo , Rúmen/metabolismo , Masculino , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Silagem/análise , Proteínas Alimentares/metabolismo , Proteínas Alimentares/administração & dosagem , Nutrientes/metabolismo
9.
Glob Chang Biol ; 30(7): e17420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044411

RESUMO

Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species- and community-level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2 by increasing root biomass in species-scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.


Assuntos
Mudança Climática , Secas , Raízes de Plantas , Clima Tropical , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Árvores/crescimento & desenvolvimento , Biomassa , Nitrogênio/metabolismo , Florestas , Inundações , Incêndios
10.
Sci Rep ; 14(1): 16772, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039098

RESUMO

Secondary tropical forests are at the forefront of deforestation pressures. They store large amounts of carbon, which, if compensated for to avoid net emissions associated with conversion to non-forest uses, may help advance tropical forest conservation. We measured above- and below-ground carbon stocks down to 1 m soil depth across a secondary forest and in oil palm plantations in Malaysia. We calculated net carbon losses when converting secondary forests to oil palm plantations and estimated payments to avoid net emissions arising from land conversion to a 22-year oil palm rotation, based on land opportunity costs per hectare. We explored how estimates would vary between forests by also extracting carbon stock data for primary forest from the literature. When tree and soil carbon was accounted for, payments of US$18-51 tCO2-1 for secondary forests and US$14-40 tCO2-1 for primary forest would equal opportunity costs associated with oil palm plantations per hectare. If detailed assessments of soil carbon were not accounted for, payments to offset opportunity costs would need to be considerably higher for secondary forests (US$28-80 tCO2-1). These results show that assessment of carbon stocks down to 1 m soil depth in tropical forests can substantially influence the estimated value of avoided-emission payments.


Assuntos
Carbono , Conservação dos Recursos Naturais , Florestas , Solo , Clima Tropical , Solo/química , Carbono/análise , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Árvores , Malásia
12.
Sci Data ; 11(1): 734, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971846

RESUMO

A vast silvicultural experiment was set up in 1982 nearby the town of M'Baïki in the Central African Republic to monitor the recovery of tropical forests after disturbance. The M'Baïki experiment consists of ten 4-ha Permanent Sample Plots (PSPs) that were assigned to three silvicultural treatments in 1986 according to a random block design. In each plot, all trees with a girth at breast height greater than 30 cm were spatially located, numbered, measured, and determined botanically. Girth, mortality and newly recruited trees, were monitored almost annually over the 1982-2022 period with inventory campaigns for 35 years. The data were earlier used to fit growth and population models, to study the species composition dynamics, and the effect of silvicultural treatments on tree diversity and aboveground biomass. Here, we present new information on the forest stand structure dynamics and tree demography. The data released from this paper cover the three control plots and constitute a major contribution for further studies about the biodiversity of intact tropical forests.


Assuntos
Florestas , Árvores , Clima Tropical , República Centro-Africana , Biodiversidade , Biomassa , África Central
13.
Sci Rep ; 14(1): 15657, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977726

RESUMO

Understanding the distribution of the plant species of an unexplored area is the utmost need of the present-day. In order to collect vegetation data, Quadrat method was used having size of 1 m2. The composite soil samples from each site were tested for various edaphic properties. PC-ORD v.5 was used for the classification of the vegetation while CANOCO v.5.1 was used for ordination of the data and to find out the complex relationship between plants and environment. Survey was conducted during summer season and a total of 216 herbaceous species were recorded from forty different sites of District Kohat, Pakistan. Cluster Analysis (CA) and Two-Way Cluster Analysis (TWCA) classified the vegetation of forty sites into six major plant groups i.e., 1. Paspalum paspalodes, Alternanthera sessilis, Typha domingensis, 2. Cynodon dactylon, Parthenium hysterophorus, Brachiaria ramosa, 3. Cynodon dactylon, Eragrostis minor, Cymbopogon jwarancusa, 4. Cymbopogon jwarancusa, Aristida adscensionis, Boerhavia procumbens, 5. Cymbopogon jwarancusa, Aristida adscensionis, Pennisetum orientale and 6. Heteropogon contortus, Bothriochloa ischaemum, Chrysopogon serrulatus. They were named after the dominant species based on their Importance Value (IV). The detrended correspondence analysis (DCA) analysis further confirmed the vegetation classification. Canonical correspondence analysis (CCA) indicated that the species distribution in the area was strongly affected by various environmental factors including status, soil characteristics, topography and altitude.


Assuntos
Plantas , Estações do Ano , Paquistão , Plantas/classificação , Análise Multivariada , Solo/química , Análise por Conglomerados , Ecossistema , Biodiversidade , Clima Tropical
14.
Nat Commun ; 15(1): 5554, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987543

RESUMO

Thermophilization is the directional change in species community composition towards greater relative abundances of species associated with warmer environments. This process is well-documented in temperate and Neotropical plant communities, but it is uncertain whether this phenomenon occurs elsewhere in the tropics. Here we extend the search for thermophilization to equatorial Africa, where lower tree diversity compared to other tropical forest regions and different biogeographic history could affect community responses to climate change. Using re-census data from 17 forest plots in three mountain regions of Africa, we find a consistent pattern of thermophilization in tree communities. Mean rates of thermophilization were +0.0086 °C·y-1 in the Kigezi Highlands (Uganda), +0.0032 °C·y-1 in the Virunga Mountains (Rwanda-Uganda-Democratic Republic of the Congo) and +0.0023 °C·y-1 in the Udzungwa Mountains (Tanzania). Distinct from other forests, both recruitment and mortality were important drivers of thermophilzation in the African plots. The forests studied currently act as a carbon sink, but the consequences of further thermophilization are unclear.


Assuntos
Mudança Climática , Florestas , Árvores , Clima Tropical , Biodiversidade , Temperatura , Uganda , Tanzânia , Ruanda , República Democrática do Congo , Sequestro de Carbono
15.
PLoS One ; 19(7): e0302222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990811

RESUMO

The genus Agaricus includes more than 500 species mostly containing the edible and cultivated species worldwide. As part of the ongoing studies on the biodiversity of genus Agaricus in Pakistan, our objective was to focus on A. sect. Minores which is the largest section of the genus. In the first phylogenetic analyses based on the ITS region of the nuclear ribosomal DNA, our sample included specimens of 97 named species, 27 unnamed species, and 31 specimens (29 newly generated sequences in this study) from subtropical climate zones of Pakistan that likely belong to this section based on their morphology. The 31 specimens grouped into five distinct, well-supported clades corresponding to five species: A. glabriusculus already known from Pakistan and India, A. robustulus first recorded from Pakistan and briefly described here but already known from Bénin, Malaysia, China, and Thailand, and three possibly endemic new species described in detail A. badiosquamulosus sp. nov., A. dunensis sp. nov., and A. violaceopunctatus sp. nov. The sixth species currently known in Pakistan, including A. latiumbonatus also found in Thailand, were included in a multigene tree based on ITS, LSU, and Tef-1α sequence data. They all belong to a large pantropical paraphyletic group while most temperate species belong to a distinct clade, which includes about half of the species of the section. The current study aims to propose three novel species of genus Agaricus based on comprehensive morphological as well as molecular phylogenetic evidences from Pakistan.


Assuntos
Agaricus , Filogenia , Paquistão , Agaricus/genética , Agaricus/classificação , Clima Tropical , DNA Fúngico/genética
16.
Plant Mol Biol ; 114(4): 83, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972957

RESUMO

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.


Assuntos
Frutas , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal/métodos , Compostos Orgânicos Voláteis/metabolismo , Paladar , Metabolômica/métodos , Aromatizantes/metabolismo , Clima Tropical , Multiômica
17.
J Contam Hydrol ; 265: 104388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38964149

RESUMO

The understanding of spatio-temporal variation in land use and land cover (LULC) patterns is crucial for managing catchment land use planning, as it directly influences of tropical reservoir water quality and the subsequent Nutrient Contamination (NC) of unmonitored water bodies. The current research attempts to accurately measure the influence of LULC and its associated determinants on the quantities of NC loads by using Chl-a as a proxy, within tropical reservoirs, i.e. Bhadra and Tungabhadra, located in same river catchment. This Chl-a spread calculated by the Maximum Chlorophyll Index (MCI) derived from Sentinel 2 satellite data products covering the period from July 2016 to June 2021 were done using Google Earth Engine (GEE) platform. The validation analysis confirms the robustness of the methodology with a strong correlation between MCI-calculated values and EOMAP (Earth Observation and Environmental Services Mapping) Chl-a (µg/L) data points for both reservoirs, Bhadra (R2 = 0.64) and Tungabhadra (R2 = 0.68). The findings reveal that, Tungabhadra reservoir consistently exhibits an excessive spatial distribution of Chl-a spread area (17 km2 to 335 km2), reflecting nutrient-rich water inflows, particularly evident during the post-monsoon period. This notable rise could be linked to harvesting the Kharif crop, resulting in elevated nutrient concentrations. In contrast Bhadra reservoir, dominated by forested areas, maintains relatively lower Chl-a spread areas (<20 km2), highlighting its pivotal role in maintaining water cleanliness and serves as a riparian boundary. In addition, the changes in LULC classes show a strong relationship with variation in Chl-a during the studied period, for the Bhadra Reservoir R2 = 0.51 (F- statistics = 3.983, p = 0.021), and the Tungabhadra Reservoir R2 = 0.802 (F- statistics = 7.489, p = 0.0143). This highlights how changes in land use significantly shape contamination dynamics, deepening our understanding of nutrient inputs and contamination drivers in tropical reservoirs.


Assuntos
Clorofila A , Monitoramento Ambiental , Índia , Monitoramento Ambiental/métodos , Clorofila A/análise , Clorofila/análise , Poluentes Químicos da Água/análise , Clima Tropical , Rios/química , Abastecimento de Água
18.
Am J Bot ; 111(7): e16373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010314

RESUMO

PREMISE: Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS: We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS: There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS: We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.


Assuntos
Adaptação Fisiológica , Orchidaceae , Folhas de Planta , Tolerância ao Sal , Orchidaceae/fisiologia , Orchidaceae/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Clorofila/metabolismo , Sódio/metabolismo , Clima Tropical
19.
Nature ; 631(8021): 570-576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961293

RESUMO

Tropical forest degradation from selective logging, fire and edge effects is a major driver of carbon and biodiversity loss1-3, with annual rates comparable to those of deforestation4. However, its actual extent and long-term impacts remain uncertain at global tropical scale5. Here we quantify the magnitude and persistence of multiple types of degradation on forest structure by combining satellite remote sensing data on pantropical moist forest cover changes4 with estimates of canopy height and biomass from spaceborne6 light detection and ranging (LiDAR). We estimate that forest height decreases owing to selective logging and fire by 15% and 50%, respectively, with low rates of recovery even after 20 years. Agriculture and road expansion trigger a 20% to 30% reduction in canopy height and biomass at the forest edge, with persistent effects being measurable up to 1.5 km inside the forest. Edge effects encroach on 18% (approximately 206 Mha) of the remaining tropical moist forests, an area more than 200% larger than previously estimated7. Finally, degraded forests with more than 50% canopy loss are significantly more vulnerable to subsequent deforestation. Collectively, our findings call for greater efforts to prevent degradation and protect already degraded forests to meet the conservation pledges made at recent United Nations Climate Change and Biodiversity conferences.


Assuntos
Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Florestas , Clima Tropical , Agricultura Florestal , Árvores/crescimento & desenvolvimento , Agricultura , Incêndios , Atividades Humanas , Tecnologia de Sensoriamento Remoto
20.
Sci Rep ; 14(1): 15179, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014003

RESUMO

Approximately 90% of global forest cover changes between 2000 and 2018 were attributable to agricultural expansion, making food production the leading direct driver of deforestation. While previous studies have focused on the interaction between human and environmental systems, limited research has explored deforestation from a food system perspective. This study analyzes the drivers of deforestation in 40 tropical and subtropical countries (2004-2021) through the lenses of consumption/demand, production/supply and trade/distribution using Extreme Gradient Boosting (XGBoost) models. Our models explained a substantial portion of deforestation variability globally (R2 = 0.74) and in Asia (R2 = 0.81) and Latin America (R2 = 0.73). The results indicate that trade- and demand-side dynamics, specifically foreign direct investments and urban population growth, play key roles in influencing deforestation trends at these scales, suggesting that food system-based interventions could be effective in mitigating deforestation. Conversely, the model for Africa showed weaker explanatory power (R2 = 0.30), suggesting that factors beyond the food system may play a larger role in this region. Our findings highlight the importance of targeting trade- and demand-side dynamics to reduce deforestation and how interventions within the food system could synergistically contribute to achieving sustainable development goals, such as climate action, life on land and zero hunger.


Assuntos
Conservação dos Recursos Naturais , Florestas , Clima Tropical , Urbanização , Urbanização/tendências , Humanos , Agricultura/economia , Abastecimento de Alimentos , Investimentos em Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA