Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.093
Filtrar
1.
Sci Rep ; 14(1): 15050, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951205

RESUMO

Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-ß-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.


Assuntos
Anti-Infecciosos , Biotransformação , Chalconas , Cloro , Testes de Sensibilidade Microbiana , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Cloro/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Beauveria/metabolismo , Fungos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento
2.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007303

RESUMO

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Assuntos
Bactérias , Incrustação Biológica , Halogenação , Centrais Nucleares , RNA Ribossômico 16S , Purificação da Água , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Purificação da Água/métodos , Água do Mar/microbiologia , Cloro/química
3.
Water Sci Technol ; 90(1): 363-372, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007324

RESUMO

There has been numerous research on the uses of treated wastewater that needs chlorine disinfection, but none have looked at the impacts of injecting nanobubbles (NBs) on the decomposition of residual chlorine. Gas NB injection in treated wastewater improves its properties. The kinetics of disinfectant decay could be impacted by changes in treated wastewater properties. This paper studies the effect of various NB injections on the residual chlorine decay of secondary treated wastewater (STWW). It also outlines the empirical equations that were developed to represent these impacts. The results show that each type of NBs in treated wastewater had a distinct initial chlorine concentration. The outcomes demonstrated a clear impact on the decrease of the needed chlorine quantity and the reduction of chlorine decay rate when utilizing NB injection for the STWW. As a result, the residual chlorine will remain for a longer time and will resist any microbiological growth under the application of NBs on treated wastewater. Moreover, NBs in secondary treated effluent reduce chlorine usage, lowering wastewater disinfection costs.


Assuntos
Cloro , Águas Residuárias , Cloro/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Desinfecção/métodos , Purificação da Água/métodos , Desinfetantes/química , Desinfetantes/farmacologia
4.
Bull Exp Biol Med ; 177(1): 98-103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38963599

RESUMO

We examined the effects of elevated temperatures and biocides on survivability of food isolates of Cronobacter spp. (C. sakazakii) and concomitant enterobacteriaceae obtained in microbiological control of infant nutrition products. Increased resistance of certain strains of Cronobacter, Enterobacter cloacae, and Pantoea spp. to thermal processing was revealed. Salmonella, Pantoea, and Cronobacter bacteria were least sensitive to antimicrobial action of chlorine-containing agents. The above properties varied in the strains of the same species. Specifically, only two of three examined isolates of Cronobacter spp. demonstrated lower sensitivity to heat in comparison with the enterobacterial test-cultures of other species.


Assuntos
Cloro , Cronobacter , Desinfetantes , Microbiologia de Alimentos , Desinfetantes/farmacologia , Cronobacter/efeitos dos fármacos , Cronobacter/isolamento & purificação , Cloro/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Temperatura Alta , Humanos , Cronobacter sakazakii/efeitos dos fármacos , Cronobacter sakazakii/isolamento & purificação , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação
5.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998932

RESUMO

Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.


Assuntos
Cloro , Escherichia coli , Membranas Artificiais , Staphylococcus aureus , Cloro/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Halogenação , Polímeros/química , Poliestirenos/química , Hidantoínas/química , Hidantoínas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Aminas
6.
Antimicrob Resist Infect Control ; 13(1): 77, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014488

RESUMO

BACKGROUND: Effective infection prevention and control programs can positively influence quality of care, increase patient safety, and protect health care providers. Chlorine, a widely used and effective chemical disinfectant, is recommended for infection prevention and control in health care settings. However, lack of consistent chlorine availability limits its use. Electrolytic chlorine generators can address limited chlorine supply and stockouts by enabling onsite production of readily usable, high-quality chlorine cost-effectively. We report the feasibility (i.e., performance, acceptability, chlorine availability, and cost) of the electrolytic STREAM Disinfectant Generator (Aqua Research, New Mexico, USA) device for infection prevention and control in primary health care facilities in Uganda. METHODS: We installed STREAM devices in 10 primary health care facilities in central and western Uganda. Commercial chlorine inventory records (stock cards) were reviewed in each facility to calculate average liters of chlorine received and used per month. These values were compared with actual STREAM chlorine production volumes over the study period to determine its impact on chlorine availability. We collected acceptability data from a purposive sample of device users (n = 16), hospital administrators (n = 10), and district health officers (n = 6) who had been directly involved in the operation or supervision of the STREAM device. We descriptively analyzed the acceptability data by user group and evaluated qualitative responses manually using a thematic approach. Cost data were normalized and modeled to determine a break-even and cost-savings analysis across a five-year period (the minimum expected lifespan of the STREAM device). RESULTS: Chlorine was consistently available without any reported stockouts during the evaluation period. STREAM chlorine production resulted in a 36.9 percent cost-savings over a five-year period compared to commercial chlorine. User acceptability of the STREAM device was high among STREAM operators, hospital administrators, and district health officers, with all respondents reporting that STREAM moderately or significantly improved infection prevention and control practices in the health facility. Overall, 88 percent of device users and 100 percent of hospital administrators wished to continue using the STREAM device instead of commercial chlorine products. CONCLUSION: The STREAM device has demonstrated significant potential to strengthen infection prevention and control practices in health care facilities in Uganda. Based on the preliminary results, the STREAM device should be considered a promising tool for district hospitals and large health centers facing infection prevention and control challenges in Uganda and elsewhere, provided water and electricity are available. Going forward, implementation of the STREAM device could also be considered in smaller health care facilities in Uganda and elsewhere.


Assuntos
Cloro , Desinfetantes , Instalações de Saúde , Atenção Primária à Saúde , Uganda , Humanos , Desinfecção/métodos , Controle de Infecções/métodos , Infecção Hospitalar/prevenção & controle
7.
Environ Sci Technol ; 58(28): 12585-12597, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38956968

RESUMO

Elevated levels of atmospheric molecular chlorine (Cl2) have been observed during the daytime in recent field studies in China but could not be explained by the current chlorine chemistry mechanisms in models. Here, we propose a Cl2 formation mechanism initiated by aerosol iron photochemistry to explain daytime Cl2 formation. We implement this mechanism into the GEOS-Chem chemical transport model and investigate its impacts on the atmospheric composition in wintertime North China where high levels of Cl2 as well as aerosol chloride and iron were observed. The new mechanism accounts for more than 90% of surface air Cl2 production in North China and consequently increases the surface air Cl2 abundances by an order of magnitude, improving the model's agreement with observed Cl2. The presence of high Cl2 significantly alters the oxidative capacity of the atmosphere, with a factor of 20-40 increase in the chlorine radical concentration and a 20-40% increase in the hydroxyl radical concentration in regions with high aerosol chloride and iron loadings. This results in an increase in surface air ozone by about 10%. This new Cl2 formation mechanism will improve the model simulation capability for reactive chlorine abundances in the regions with high emissions of chlorine and iron.


Assuntos
Aerossóis , Atmosfera , Cloro , Ferro , Oxirredução , Cloro/química , China , Ferro/química , Atmosfera/química , Poluentes Atmosféricos/química , Fotoquímica
8.
Nefrologia (Engl Ed) ; 44(3): 338-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38964947

RESUMO

Up to 50% of patients admitted for heart failure (HF) have congestion at discharge despite diagnostic and therapeutic advances. Both persistent congestion and diuretic resistance are associated with worse prognosis. The combination of hypertonic saline and loop diuretic has shown promising results in different studies. However, it has not yet achieved a standardized use, partly because of the great heterogeneity in the concentration of sodium chloride, the dose of diuretic or the amount of sodium in the diet. Classically, the movement of water from the intracellular space due to an increase in extracellular osmolarity has been postulated as the main mechanism involved. However, chloride deficit is postulated as the main up-regulator of plasma volume changes, and its correction may be the main mechanism involved. This "chloride centric" approach to heart failure opens the door to therapeutic strategies that would include diuretics to correct hypochloremia, as well as sodium free chloride supplementation.


Assuntos
Insuficiência Cardíaca , Sódio , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Solução Salina Hipertônica/uso terapêutico , Sódio/sangue , Cloretos/sangue , Cloro , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico
9.
Chem Biol Interact ; 398: 111082, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825055

RESUMO

The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.


Assuntos
Antineoplásicos , Chalconas , Cloro , Lipossomos , Humanos , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Lipossomos/química , Cloro/química , Linhagem Celular Tumoral , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membrana Celular/efeitos dos fármacos , Fosfatidilcolinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química
10.
J Hazard Mater ; 474: 134697, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823102

RESUMO

Airborne pathogens severely threaten public health worldwide. Air disinfection is essential to ensure public health. However, excessive use of disinfectants may endanger environmental and ecological security due to the residual disinfectants and their by-products. This study systematically evaluated disinfection efficiency, induction of multidrug resistance, and the underlying mechanisms of disinfectants (NaClO and H2O2) on airborne bacteria. The results showed that airborne bacteria were effectively inactivated by atomized NaClO (>160 µg/L) and H2O2 (>320 µg/L) after 15 min. However, some bacteria still survived after disinfection by atomized NaClO (0-80 µg/L) and H2O2 (0-160 µg/L), and they exhibited significant increases in antibiotic resistance. The whole-genome sequencing of the resistant bacteria revealed distinct mutations that were responsible for both antibiotic resistance and virulence. This study also provided evidences and insights into possible mechanisms underlying the induction of antibiotic resistance by air disinfection, which involved intracellular reactive oxygen species formation, oxidative stress responses, alterations in bacterial membranes, activation of efflux pumps, and the thickening of biofilms. The present results also shed light on the role of air disinfection in inducing antibiotic resistance, which could be a crucial factor contributing to the global spread of antibiotic resistance through the air.


Assuntos
Bactérias , Desinfetantes , Desinfecção , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbiologia do Ar , Biofilmes/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Cloro/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
J Microorg Control ; 29(2): 75-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880619

RESUMO

When a hypochlorite solution is ultrasonically fogged in a room, free chlorine, i.e., HOCl and OCl-, reaches various positions in two forms: fine fog droplets and gaseous hypochlorous acid(HOCl(g)). In this study, the cumulative amount of free chlorine reaching various positions on the floor away from the fogger was measured in a 90-m3 room, using a sulfamate-carrying glass-fiber filter indicator. The fine droplets were blown out from the fogger into the spaces at different discharge port angles of 30 - 90°. Free chlorine was successfully trapped by sulfamate, forming monochlorosulfamate, which was stably retained on the indicator. The cumulative amount of free chlorine( ng/indicator) increased with fogging time at each position and depended on the blow angle and distance from the fogger. Minor differences in the HOCl(g) concentration near the floor at all positions were observed. The disinfection efficacy of the fogging treatment against Staphylococcus aureus on wet surfaces was relatively higher at positions near the fogger and lower at positions far from the fogger. At each discharge port angle, a strong correlation between the logarithmic reduction in relative viable cells and the cumulative amount of free chlorine reaching S. aureus plates was observed. The slopes of the regression lines of correlation diagrams as a function of the cumulative amount of free chlorine were between -0.0362 and -0.0413 ng-1. This study demonstrated that the cumulative amount of free chlorine measured using the filter indicator could reflect the sum of the free chlorine of both fine droplets and HOCl(g), and that the disinfection efficiency depended on the cumulative amount of free chlorine reaching different areas.


Assuntos
Cloro , Desinfetantes , Desinfecção , Ácido Hipocloroso , Staphylococcus aureus , Cloro/farmacologia , Cloro/química , Desinfecção/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Ácido Hipocloroso/farmacologia , Ácido Hipocloroso/química , Desinfetantes/farmacologia , Desinfetantes/química , Ultrassom
12.
J Hazard Mater ; 475: 134825, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876014

RESUMO

The coupling of thermal remediation with microbial reductive dechlorination (MRD) has shown promising potential for the cleanup of chlorinated solvent contaminated sites. In this study, thermal treatment and bioaugmentation were applied in series, where prior higher thermal remediation temperature led to improved TCE dechlorination performance with both better organohalide-respiring bacteria (OHRB) colonization and electron donor availability. The 60 °C was found to be a key temperature point where the promotion effect became obvious. Amplicon sequencing and co-occurrence network analysis demonstrated that temperature was a more dominating factor than bioaugmentation that impacted microbial community structure. Higher temperature of prior thermal treatment resulted in the decrease of richness, diversity of indigenous microbial communities, and simplified the network structure, which benefited the build-up of newcoming microorganisms during bioaugmentation. Thus, the abundance of Desulfitobacterium increased from 0.11 % (25 °C) to 3.10 % (90 °C). Meanwhile, released volatile fatty acids (VFAs) during thermal remediation functioned as electron donors and boosted MRD. Our results provided temperature-specific information on synergistic effect of sequential thermal remediation and bioaugmentation, which contributed to better implementation of the coupled technologies in chloroethene-impacted sites.


Assuntos
Biodegradação Ambiental , Halogenação , Tricloroetileno , Tricloroetileno/metabolismo , Tricloroetileno/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Temperatura Alta , Ácidos Graxos Voláteis/metabolismo , Oxirredução , Desulfitobacterium/metabolismo , Temperatura , Bactérias/metabolismo , Bactérias/genética , Microbiota , Recuperação e Remediação Ambiental/métodos , Cloro/química , Cloro/metabolismo
13.
Environ Sci Technol ; 58(27): 12260-12271, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38923944

RESUMO

Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.


Assuntos
Cloro , Desinfecção , Cloro/farmacologia , Inativação de Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Desinfetantes/farmacologia
14.
Waste Manag ; 186: 11-22, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843559

RESUMO

The fast development of the waste incineration industry requires deeper insights into heating surface corrosion behavior at higher operating parameters with complex corrosion sources. This research investigates the corrosion behaviors of three types of plates, namely SA210-C, TP310, and 12CrMoV, when subjected to simulated flue gas and fly ash deposition simultaneously at temperatures ranging from 500℃ to 620℃. The results indicate that the weight loss due to coupling corrosion was 2.5 to 84.5 times higher than that of gas-phase corrosion under the same operating conditions. Among the three stainless-steels, TP310 demonstrates superior corrosion resistance. It is worth noting that, under the gas-solid coupling corrosion conditions, we observed a distinct two-layer structure of corrosion products. Despite the fly ash simulants detaching over time, the two-layer structure remained unchanged. Based on the theory of eutectic molten salt formation, we propose that alkali metal chlorides only initiate the formation of the molten layer in the initial stage of corrosion. Furthermore, we offer additional suggestions for the mechanism of sustaining the molten layer in the absence of alkali metal chlorides.


Assuntos
Cloro , Cinza de Carvão , Incineração , Aço Inoxidável , Incineração/métodos , Corrosão , Cinza de Carvão/química , Cloro/química , Aço Inoxidável/química , Vapor/análise , Gases/química
15.
Mar Pollut Bull ; 205: 116586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878418

RESUMO

The present study compares the CMFDA/FDA + motility- and the Most Probable Number (MPN) Dilution Culture + Motility methods for testing the viability of ≥10-<50 µm organisms in chlorine treated ballast water. The results of both methods were within the regulatory compliance criterion <10 organisms/mL, but the MPN-method revealed that growth-outs did occur. While the CMFDA/FDA method showed <0.5 organisms/mL, the MPN-method gave approx. 6 organisms/mL. This demonstrated that false negatives, i.e. living but not stained organisms, may occur when using the CMFDA/FDA-method for compliance testing of chemical treated ballast water. Organisms surviving the treatment were primarily the dinoflagellate Scrippsiella sp. and various coccoid chlorophytes present in a brackish- and freshwater test, respectively. It is suggested that their resilience to the chemical treatment is the ability to transform into a temporary cyst (Scrippsiella sp.) or the presence of a chemical resistant cell wall (certain chlorophytes).


Assuntos
Dinoflagellida , Dinoflagellida/efeitos dos fármacos , Navios , Clorófitas/efeitos dos fármacos , Cloro
16.
Water Res ; 259: 121794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824796

RESUMO

Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.


Assuntos
Cloro , Desinfetantes , Legionella , Purificação da Água , Cloraminas/farmacologia , Cloro/farmacologia , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Legionella/efeitos dos fármacos , Óxidos/farmacologia , Microbiologia da Água , Purificação da Água/métodos , Abastecimento de Água
17.
J Water Health ; 22(6): 1064-1074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935457

RESUMO

We characterized concentrations of trihalomethanes (THMs), a measure of disinfection byproducts (DBPs), in tap water samples collected from households with utility-supplied water in two rural counties in Appalachian Virginia, and assessed associations with pH, free chlorine, and metal ions which can impact THM formation. Free chlorine concentrations in all samples (n = 27 homes) complied with EPA drinking water guidelines, though 7% (n = 2) of first draw samples and 11% (n = 3) of 5-min flushed-tap water samples exceeded the US Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) for THM (80 ppb). Regression analyses showed that free chlorine and pH were positively associated with the formation of THM levels above SDWA MCLs (OR = 1.04, p = 0.97 and OR = 1.74, p = 0.79, respectively), while temperature was negatively associated (OR = 0.78, p = 0.38). Of the eight utilities serving study households, samples from water served by three different utilities exceeded the EPA MCL for THM. Overall, these findings do not indicate substantial exposures to DBPs for rural households with utility-supplied water in this region of southwest Virginia. However, given the observed variability in THM concentrations between and across utilities, and established adverse health impacts associated with chronic and acute DBP exposure, more research on DBPs in rural Central Appalachia is warranted.


Assuntos
Cloro , Água Potável , População Rural , Trialometanos , Poluentes Químicos da Água , Abastecimento de Água , Virginia , Cloro/análise , Água Potável/química , Água Potável/análise , Poluentes Químicos da Água/análise , Trialometanos/análise , Purificação da Água/métodos , Desinfecção , Humanos , Desinfetantes/análise , Região dos Apalaches , Características da Família
18.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861959

RESUMO

Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.


Assuntos
Nanoestruturas , Polímeros de Fluorcarboneto/química , Polivinil/química , Nanoestruturas/química , Cápsulas , Compostos de Tungstênio/química , Sulfetos/química , Eletricidade , Potássio/química , Íons/química , Cloro/química
19.
Food Microbiol ; 122: 104552, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839232

RESUMO

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Assuntos
Queijo , Cloro , Listeria monocytogenes , Espécies Reativas de Oxigênio , Salmonella typhimurium , Raios Ultravioleta , Queijo/microbiologia , Queijo/análise , Listeria monocytogenes/efeitos da radiação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/efeitos dos fármacos , Salmonella typhimurium/efeitos da radiação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cloro/farmacologia , Irradiação de Alimentos/métodos , Microbiologia de Alimentos , Viabilidade Microbiana/efeitos da radiação , Contagem de Colônia Microbiana
20.
Arch Microbiol ; 206(7): 295, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856934

RESUMO

Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.


Assuntos
Bactérias , Biofilmes , Cloro , Água Potável , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cloro/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Água Potável/microbiologia , Cobre/farmacologia , Microbiologia da Água , Aço Inoxidável , Polipropilenos , Abastecimento de Água , Halogenação , Corrosão , Desinfetantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA