Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79.194
Filtrar
1.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003064

RESUMO

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Assuntos
Cobre , Peróxidos , Poluentes Químicos da Água , Cobre/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Ferro/química , Rodaminas/química , Oxirredução
2.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952675

RESUMO

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Próteses e Implantes , Ligas/farmacologia , Ligas/química , Ratos , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Masculino , Microtomografia por Raio-X , Linhagem Celular , Nanopartículas Metálicas/química
3.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961578

RESUMO

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Assuntos
Antibacterianos , Parede Celular , Cobre , Cicatrização , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Humanos , Nanopartículas/química , Testes de Sensibilidade Microbiana
4.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963329

RESUMO

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Assuntos
Cobre , Ferroptose , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Cobre/metabolismo , Cobre/deficiência , Masculino , Camundongos , Hipóxia/metabolismo , Humanos , Células Hep G2 , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo , Metabolismo dos Lipídeos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Ferro/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , PPAR alfa/metabolismo , PPAR alfa/genética
5.
Subcell Biochem ; 104: 17-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963481

RESUMO

The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.


Assuntos
Cobre , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , Transativadores
6.
Environ Geochem Health ; 46(8): 281, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963650

RESUMO

The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.


Assuntos
Agricultura , Cobre , Poluentes do Solo , Solo , Cobre/química , Solo/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Adsorção , Nanopartículas Metálicas/química , Condutividade Elétrica , Tamanho da Partícula
7.
Sci Rep ; 14(1): 15175, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956251

RESUMO

In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.


Assuntos
Cobre , Dissulfiram , Homeostase , Inflamação , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Dissulfiram/farmacologia , Camundongos , Cobre/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Regulação para Baixo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Ferro-Enxofre/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor 4 Toll-Like/metabolismo
8.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963544

RESUMO

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Assuntos
Cobre , Doxorrubicina , Glucose Oxidase , Ácido Hialurônico , Estruturas Metalorgânicas , Microambiente Tumoral , Zeolitas , Cobre/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Microambiente Tumoral/efeitos dos fármacos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Zeolitas/química , Animais , Estruturas Metalorgânicas/química , Ácido Hialurônico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Imidazóis
9.
Anal Chim Acta ; 1316: 342842, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969406

RESUMO

BACKGROUND: Fluoroquinolones (FQs) are widely used in livestock and poultry industry because of their satisfactory effects in preventing and treating bacterial infection. However, due to irrational use and poor biodegradability, FQs can easily remain in food animals and further enter the human body through the food chain. Therefore, accurate and sensitive detection of FQs residues in animal-origin food is significant. The traditional methods commonly used for FQs detection have some limitations. Ratiometric fluorescence detection technology has the advantages of fast, sensitive, self-correcting, and easy visualization. However, the reports on the use of ratiometric fluorescence probes for FQs detection are limited. RESULTS: In this work, a novel probe was proposed for ratiometric fluorescent analysis of FQs. In this probe, the fluorescence of dithioerythritol stabilized copper nanoclusters (DTE-Cu NCs) was significantly enhanced due to the Tb3+ triggered aggregation-induced emission effect. FQs bound Tb3+ in Tb3+/DTE-Cu NCs through carboxyl and carbonyl groups, so that Tb3+ was effectively sensitized to emit green fluorescence. However, the red fluorescence of DTE-Cu NCs was not interfered. The fluorescence of the probe transformed from red to green with the increase of FQs concentration. Using norfloxacin (NOR), difloxacin (DIF), and enrofloxacin (ENR) as FQs simulants, this probe showed a sensitive linear response ranged from 0.025 to 22.5 µM, with the limits of detection of 9.6 nM, 9.3 nM, and 7.7 nM. The application potential for FQs detection was verified via a standard addition assay of egg samples with the recovery rate of 90.4 %-114.7 %. SIGNIFICANT: The fluorescence probe based on Tb3+/DTE-Cu NCs is expected to realize the ratiometric fluorescence sensitive detection of FQs. The establishment of this simple, effective, and rapid detection platform opens up a new way for the detection of FQs residues in animal-origin foods, and also provides a new idea for the design of rapid detection platforms for other hazard factors.


Assuntos
Cobre , Corantes Fluorescentes , Fluoroquinolonas , Térbio , Cobre/química , Cobre/análise , Fluoroquinolonas/análise , Fluoroquinolonas/química , Corantes Fluorescentes/química , Térbio/química , Espectrometria de Fluorescência , Nanopartículas Metálicas/química , Animais , Limite de Detecção
10.
Anal Chim Acta ; 1316: 342852, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969409

RESUMO

BACKGROUND: With the advent of personalized medical approaches, precise and tailored treatments are expected to become widely accepted for the prevention and treatment of diabetes. Paper-based colorimetric sensors that function in combination with smartphones have been rapidly developed in recent years because it does not require additional equipment and is inexpensive and easy to perform. In this study, we developed a portable, low-cost, and wearable sweat-glucose detection device for in situ detection. RESULTS: The sensor adopted an integrated biomimetic nanoenzyme of glucose oxidase (GOx) encapsulated in copper 1, 4-benzenedicarboxylate (CuBDC) (GOx@CuBDC) through a biomimetic mineralization process. CuBDC exhibited a peroxide-like effect, cascade catalytic effect with the encapsulated GOx, and increased the enzyme stability. GOx@CuBDC and 3,3,5,5-tetramethylbenzidine were combined to form a hybrid membrane that achieved single-step paper-based glucose detection. SIGNIFICANCE AND NOVELTY: This GOx@CuBDC-based colorimetric glucose sensor was used to quantitatively analyze the sweat-glucose concentration with smartphone readings. The sensor exhibited a good linear relationship over the concentration range of 40-900 µM and a limit of detection of 20.7 µM (S/N = 3). Moreover, the sensor performed well in situ monitoring and in evaluating variations based on the consumption of foods with different glycemic indices. Therefore, the fabricated wearable sweat-glucose sensors exhibited optimal practical application performance.


Assuntos
Técnicas Biossensoriais , Colorimetria , Cobre , Glucose Oxidase , Glucose , Smartphone , Suor , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Cobre/química , Suor/química , Humanos , Glucose/análise , Dispositivos Eletrônicos Vestíveis , Limite de Detecção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
11.
Exp Biol Med (Maywood) ; 249: 10185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978540

RESUMO

Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.


Assuntos
Aterosclerose , Cobre , Homeostase , Cobre/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Animais
12.
Sci Rep ; 14(1): 16067, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992206

RESUMO

Nickel (Ni) and copper (Cu) contamination have become major threats to plant survival worldwide. 24-epibrassinolide (24-EBR) and melatonin (MT) have emerged as valuable treatments to alleviate heavy metal-induced phytotoxicity. However, plants have not fully demonstrated the potential mechanisms by which these two hormones act under Ni and Cu stress. Herein, this study investigated the impact of individual and combined application of 24-EBR and MT on the growth and physiological traits of Primula forbesii Franch. subjected to stress (200 µmol L-1 Ni and Cu). The experiments compared the effects of different mitigation treatments on heavy metal (HM) stress and the scientific basis and practical reference for using these exogenous substances to improve HM resistance of P. forbesii in polluted environments. Nickel and Cu stress significantly hindered leaf photosynthesis and nutrient uptake, reducing plant growth and gas exchange. However, 24-EBR, MT, and 24-EBR + MT treatments alleviated the growth inhibition caused by Ni and Cu stress, improved the growth indexes of P. forbesii, and increased the gas exchange parameters. Exogenous MT effectively alleviated Ni stress, and 24-EBR + MT significantly alleviated the toxic effects of Cu stress. Unlike HM stress, MT and 24-EBR + MT activated the antioxidant enzyme activity (by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), significantly reduced reactive oxygen species (ROS) accumulation, and regulated ascorbate and glutathione cycle (AsA-GSH) efficiency. Besides, the treatments enhanced the ability of P. forbesii to accumulate HMs, shielding plants from harm. These findings conclusively illustrate the capability of 24-EBR and MT to significantly bolster the tolerance of P. forbesii to Ni and Cu stress.


Assuntos
Brassinosteroides , Cobre , Melatonina , Níquel , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Esteroides Heterocíclicos/farmacologia , Níquel/toxicidade , Cobre/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia
13.
Front Immunol ; 15: 1371446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994365

RESUMO

Background: Acetaminophen (APAP) is commonly used as an antipyretic analgesic. However, acetaminophen overdose may contribute to liver injury and even liver failure. Acetaminophen-induced liver injury (AILI) is closely related to mitochondrial oxidative stress and dysfunction, which play critical roles in cuproptosis. Here, we explored the potential role of cuproptosis-related genes (CRGs) in AILI. Methods: The gene expression profiles were obtained from the Gene Expression Omnibus database. The differential expression of CRGs was determined between the AILI and control samples. Protein protein interaction, correlation, and functional enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was evaluated. The AILI mouse model was established by intraperitoneal injection of APAP solution. Quantitative real-time PCR and western blotting were used to validate hub gene expression in the AILI mouse model. The copper content in the mouse liver samples and AML12 cells were quantified using a colorimetric assay kit. Ammonium tetrathiomolybdate (ATTM), was administered to mouse models and AML12 cells in order to investigate the effects of copper chelator on AILI. Results: The analysis identified 7,809 differentially expressed genes, 4,245 of which were downregulated and 3,564 of which were upregulated. Four optimal feature genes (OFGs; SDHB, PDHA1, NDUFB2, and NDUFB6) were identified through the intersection of two machine learning algorithms. Further nomogram, decision curve, and calibration curve analyses confirmed the diagnostic predictive efficacy of the four OFGs. Enrichment analysis indicated that the OFGs were involved in multiple pathways, such as IL-17 pathway and chemokine signaling pathway, that are related to AILI progression. Immune infiltration analysis revealed that macrophages were more abundant in AILI than in control samples, whereas eosinophils and endothelial cells were less abundant. Subsequently, the AILI mouse model was successfully established, and histopathological analysis using hematoxylin-eosin staining along with liver function tests revealed a significant induction of liver injury in the APAP group. Consistent with expectations, both mRNA and protein levels of the four OFGs exhibited a substantial decrease. The administration of ATTAM effectively mitigates copper elevation induced by APAP in both mouse model and AML12 cells. However, systemic administration of ATTM did not significantly alleviate AILI in the mouse model. Conclusion: This study first revealed the potential role of CRGs in the pathological process of AILI and offered novel insights into its underlying pathogenesis.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Biologia Computacional , Aprendizado de Máquina , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Animais , Camundongos , Biologia Computacional/métodos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Cobre , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica , Transcriptoma , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Mapas de Interação de Proteínas
14.
Environ Geochem Health ; 46(9): 311, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001930

RESUMO

The Salacia reticulata, a medicinal woody climbing shrub, was utilized for our study, the green synthesis of CuO nanoparticles, which were analyzed through SEM, EDX, FTIR, XRD, and UV‒Vis spectroscopy. This study assessed the toxicity to zebrafish embryos and explored the antibacterial, cytotoxic, antidiabetic, and anti-inflammatory properties of the synthesized nanoparticles. In results, the UV absorption of the CuO NPs showed that the intensity of nanoparticle green colloidal suspension changed from blue to green, which also confirmed that the spectrum of the green CuO NPs changed from colorless to black. in FT-IR and XRD spectral analysis to identify functional groups and determine the particle size of CuO NPs prepared by green and chemical methods. Its showed that CuO NPs (green) had a size of approximately 42.2 nm, while CuO NPs (chemical) had a size of approximately 84 nm. The morphology of these NPs was analyzed using SEM-EDX. Compared with their chemically prepared counterparts, the green-synthesized CuO nanoparticles demonstrated superior dispersion. Additionally, both green and chemical CuO nanoparticles at a concentration of 200 µL/mL caused developmental anomalies and increased mortality in zebrafish embryos and larvae. The green and chemical CuO NPs inhibited α-glucosidase enzyme activity at concentrations between 10 and 50 µL/mL, with IC50 values of 22 µL/mL and 26 µL/mL, respectively. The extract exhibited anti-inflammatory activity, with IC50 values of 274 and 109 µL/mL. The authors concluded that this green nanoparticle method has potential as a more eco-friendly and cost-effective alternative to traditional synthetic methods. NPs are widely used in human contact fields (medicine and agriculture), hence synthesis methods that do not involve toxic substances are becoming increasingly important.


Assuntos
Cobre , Embrião não Mamífero , Nanopartículas Metálicas , Salacia , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Cobre/toxicidade , Cobre/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Embrião não Mamífero/efeitos dos fármacos , Salacia/química , Química Verde/métodos , Tamanho da Partícula , Anti-Inflamatórios/toxicidade , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antibacterianos/toxicidade , Antibacterianos/química , Hipoglicemiantes/toxicidade , Hipoglicemiantes/química
15.
J Environ Manage ; 365: 121628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955040

RESUMO

To address the challenges posed by solid waste generated from coal gasification ash, a pyrolysis self-activation method was employed to prepare activated carbon by gasification ash, followed by the modification with manganese oxide to enhance its adsorption performance. Subsequently, the removal efficiency and mechanism for copper citrate were investigated. The results demonstrated the successful preparation of manganese oxides modified gasification ash-derived activated carbon (GAC-MnOx), exhibiting a specific surface area of 158.3 m2/g and a pore volume of 0.1948 cm³/g. The kinetic process could be described by the pseudo-second-order kinetic model (R2 = 0.958). High removal efficiency and low concentration of dissolved Mn were observed within the pH range of 3-10, where the adsorption capacity of GAC-MnOx for copper citrate exhibited an inverse relationship with pH. Notably, the fitting results of the Langmuir model demonstrated that the maximum adsorption capacity of GAC-MnOx for copper citrate is determined to be 7.196 mg/g at pH 3. The adsorption capacity of GAC-MnOx was found to be significantly reduced to 0.26 mg/g as the pH decreased below 2, potentially attributed to the dissolution of Mn. The findings of the Dual-Mode model demonstrated that the copper citrate removal mechanism by GAC-MnOx involved both surface adsorption and precipitation processes as follows: the porous structure of activated carbon enables physical adsorption of copper citrate, the MnOx or oxygen-containing functional groups establish chemical bonds with copper citrate and subsequently precipitate onto the surface of the adsorbent. The physical adsorption remains predominant in the removal of copper citrate, despite a gradual decrease in its proportion with increasing pH and equilibrium concentrations. Moreover, the X-ray photoelectron spectroscopy results indicated that copper citrate might be oxidized by MnOx to release copper ions and be retained on the surface of the adsorbent, meaning the adsorption efficiency of Cu(II)-Cit by GAC was enhanced through MnOx oxidation. This study could provide a new strategy for the high-value resource utilization of gasification ash.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Compostos de Manganês/química , Óxidos/química , Carbono/química , Carvão Vegetal/química , Cinética , Cobre/química , Concentração de Íons de Hidrogênio
16.
Water Sci Technol ; 90(1): 225-237, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007316

RESUMO

To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.


Assuntos
Amônia , Cobre , Eletrodos , Hidróxidos , Níquel , Nitrogênio , Oxirredução , Amônia/química , Nitrogênio/química , Níquel/química , Cobre/química , Hidróxidos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas/métodos , Poluentes Químicos da Água/química
17.
ACS Appl Bio Mater ; 7(7): 4795-4803, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958186

RESUMO

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.


Assuntos
Antineoplásicos , Cobre , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas Metálicas , Mitocôndrias , Omeprazol , Tamanho da Partícula , Cobre/química , Cobre/farmacologia , Omeprazol/química , Omeprazol/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas Metálicas/química , Camundongos , Animais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Teste de Materiais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral
18.
Vet Rec ; 195(2): e4397, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38975621

RESUMO

BACKGROUND: Oversupply of dietary copper (Cu) is common among UK dairy herds, but studies on the long-term outcomes of this oversupply are scarce. METHODS: A longitudinal study was undertaken to determine the long-term implications when 80 Holstein‒Friesian heifers with a mean (±standard error) age of 4.1 ± 0.1 months and a mean liveweight of 137 ± 2.4 kg were fed a recommended (R; 16 mg/kg dry matter [DM]) or high (H; 32 mg/kg DM) dietary Cu concentration until 6 weeks prior to calving. RESULTS: Hepatic Cu concentrations in both treatment groups were elevated into the ranges used to diagnose chronic Cu toxicity in cattle at 6.9 months of age (798 ± 46.4 mg/kg DM for H vs. 643 ± 35.4 mg/kg DM for R), with associated evidence of liver damage. Hepatic Cu concentrations then returned to normality but remained higher (p < 0.001) for heifers fed H than for those fed R and were associated with a reduced (p = 0.044) conception rate to first and second services (73.7 ± 8.05% for H vs. 91.2 ± 7.68% for R). LIMITATION: This retrospective analysis identified pre-study liver damage, which may have affected results. CONCLUSIONS: Supplying Cu in excess of requirements resulted in liver damage and reduced conception rates.


Assuntos
Ração Animal , Cobre , Fertilidade , Fígado , Animais , Bovinos , Cobre/análise , Feminino , Fígado/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Estudos Longitudinais , Ração Animal/análise , Gravidez , Dieta/veterinária , Indústria de Laticínios
19.
Antonie Van Leeuwenhoek ; 117(1): 105, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043973

RESUMO

A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.


Assuntos
Achromobacter , Cobre , Glicina , Glifosato , Medicago sativa , Rizosfera , Glicina/análogos & derivados , Glicina/metabolismo , Cobre/metabolismo , Achromobacter/genética , Achromobacter/metabolismo , Achromobacter/classificação , Achromobacter/efeitos dos fármacos , Medicago sativa/microbiologia , Filogenia , Genoma Bacteriano , Microbiologia do Solo , Raízes de Plantas/microbiologia , Genômica , Biodegradação Ambiental
20.
Nat Commun ; 15(1): 6174, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039047

RESUMO

The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.


Assuntos
Cobre , Peróxido de Hidrogênio , Peroxidase , Tolerância a Radiação , Cobre/química , Animais , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Peroxidase/química , Camundongos , Linhagem Celular Tumoral , Catálise/efeitos da radiação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA