RESUMO
The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aß-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.
Assuntos
Doença de Alzheimer , Amiloide , Animais , Amiloide/química , Agregados Proteicos , Caenorhabditis elegans/metabolismo , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas , Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Cromonas , LipídeosRESUMO
Continuous innovation in artificially-induced agarwood technology is increasing the amount of agarwood and substantially alleviating shortages. Agarwood is widely utilized in perfumes and fragrances; however, it is unclear whether the overall pharmacological activity of induced agarwood can replace wild agarwood for medicinal use. In this study, the volatile components, total chromone content, and the differences in the overall activities of wild agarwood and induced agarwood, including the antioxidant, anti-acetylcholinesterase, and anti-glucosidase activity were all determined. The results indicated that both induced and wild agarwood's chemical makeup contains sesquiterpenes and 2-(2-phenylethyl)chromones. The total chromone content in generated agarwood can reach 82.96% of that in wild agarwood. Induced agarwood scavenged 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals and inhibited acetylcholinesterase activity and α-glucosidase activity with IC50 values of 0.1873 mg/mL, 0.0602 mg/mL, 0.0493 mg/mL, and 0.2119 mg/mL, respectively, reaching 80.89%, 93.52%, 93.52%, and 69.47% of that of wild agarwood, respectively. Accordingly, the results distinguished that induced agarwood has the potential to replace wild agarwood in future for use in medicine because it has a similar chemical makeup to wild agarwood and has comparable antioxidant, anti-acetylcholinesterase, and anti-glucosidase capabilities.
Assuntos
Perfumes , Sesquiterpenos , Thymelaeaceae , Antioxidantes/farmacologia , Antioxidantes/química , Thymelaeaceae/química , Cromonas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Flavonoides/farmacologia , Flavonoides/química , Estrutura MolecularRESUMO
Chromones are the structural building blocks of several natural flavonoids. The synthesis of chromones, which contain a hydroxy group on the ring, presents some challenges. We used the one-pot method to synthesize ten chromone derivatives and two related compounds using modified Baker-Venkataraman reactions. The structures were confirmed using FT-IR, 1H NMR, 13C NMR, and HRMS. The in vitro antioxidant assay revealed that compounds 2e, 2f, 2j, and 3i had potent antioxidant activity and that all these synthesized compounds, except those containing nitro groups, were harmless to normal cells. In addition, compounds 2b, 2d, 2e, 2f, 2g, 2i, and 2j had anticancer activity. Compounds 2f and 2j were used to investigate the mechanism of anticancer activity. Both 2f and 2j induced a slightly early apoptotic effect but significantly impacted the S phase in the cell cycle. The effect on cell invasion indicates that both compounds significantly inhibited the growth of cervical cancer cells. A chromone scaffold possesses effective chemoprotective and antioxidant properties, making it a promising candidate for antioxidant and future cancer treatments.
Assuntos
Antioxidantes , Cromonas , Cromonas/química , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/química , Estresse OxidativoRESUMO
Five unusual meroterpenoids based on new carbon skeletons, pauciflorins A-E (1-5), were isolated by multistep chromatographic separations of a methanol extract of the aerial parts of Centrapalus pauciflorus. Compounds 1-3 are derived by the connection of a 2-nor-chromone and a monoterpene unit, whereas 4 and 5 are dihydrochromone-monoterpene adducts with a rarely occurring orthoester functionality. The structures were solved using 1D and 2D NMR, HRESIMS, and single-crystal X-ray diffraction. Pauciflorins A-E were evaluated for antiproliferative activity against human gynecological cancer cell lines, but were inactive (IC50 < 10 µM) in each case.
Assuntos
Cromonas , Monoterpenos , Humanos , Estrutura Molecular , Cromonas/farmacologia , Cristalografia por Raios X , Espectroscopia de Ressonância MagnéticaRESUMO
A new isopropyl chromone (1) and a new flavanone glucoside (2) together with eleven known compounds (3-13) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one (1), 5,7-dihydroxyflavanone 7-O-ß-D-(6''-O-galloylglucopyranoside) (2), strobopinin (3), demethoxymatteucinol (4), pinocembrin-7-O-ß-D-glucopyranoside (5), (2S)-hydroxynaringenin-7-O-ß-D-glucopyranoside (6), afzelin (7), quercetin (8), kaplanin (9), endoperoxide G3 (10), grasshopper (11), vomifoliol (12), litseagermacrane (13) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1, 2, 5, 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34â µM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98â µM, compared to that of the positive control, NG -monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00â µM.
Assuntos
Flavanonas , Syzygium , Glucosídeos/farmacologia , Glucosídeos/química , Syzygium/química , Cromonas/farmacologia , Óxido Nítrico , Flavanonas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estrutura MolecularRESUMO
Fifteen new chromones, sadivamones A-E (1-5), cimifugin monoacetate (6), sadivamones F-N (7-15), together with fifteen known chromones (16-30), were isolated from the ethyl acetate portions of 70% ethanol extract of Saposhnikovia divaricata (Turcz.) Schischk roots. The structures of the isolates were determined using 1D/2D NMR data and electron circular dichroism (ECD) calculations. Meanwhile, LPS induced RAW264.7 inflammatory cell model was used to determine the potential anti-inflammatory activity of all the isolated compounds in vitro. The results showed that compounds 2, 8, 12-13, 18, 20-22, 24, and 27 significantly inhibited the production of lipopolysaccharide (LPS)-induced NO in macrophages. To determine the signaling pathways involved in the suppression of NO production by compounds 8, 12 and 13, we investigated ERK and c-Jun N-terminal protein kinase (JNK) expression by western blot analysis. Further mechanistic studies demonstrated that compounds 12 and 13 inhibited the phosphorylation of ERK and the activation of ERK and JNK signaling in RAW264.7 cells via MAPK signaling pathways. Taken together, compounds 12 and 13 may be valuable candidates for the treatment of inflammatory diseases.
Assuntos
Apiaceae , Medicamentos de Ervas Chinesas , Lipopolissacarídeos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Apiaceae/química , Cromonas/farmacologia , Cromonas/química , Anti-Inflamatórios/farmacologiaRESUMO
Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
Assuntos
5'-Nucleotidase , Fosfatase Alcalina , Ratos , Humanos , Animais , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Cromonas/farmacologiaRESUMO
Pyrimethamine is an antiparasitic compound available only in tablet form for oral administration. A review of the therapeutic uses of pyrimethamine reveals the need for flexibility in dosing. This flexibility is readily achieved using an oral liquid dosage form. However, no commercial liquid dosage form of pyrimethamine currently exists. Pyrimethamine is available commercially only as 25-mg tablets. An extemporaneously compounded suspension from pure drug powder would provide a flexible, customizable option to meet unique patient needs with convenient and accurate dosing options. The purpose of this study was to determine the physicochemical and microbiological stability of extemporaneously compounded pyrimethamine suspension in PCCA Base, SuspendIt. This base is a sugar-free, paraben-free, dye-free, and gluten-free thixotropic vehicle containing a natural sweetener obtained from the monk fruit. A robust stability-indicating high-performance liquid chromatographic assay for the determination of the chemical stability of pyrimethamine in PCCA SuspendIt was developed and validated. Suspensions of pyrimethamine were prepared in PCCA SuspendIt at a 2-mg/mL concentration, selected to provide flexibility in customizing individual doses. Samples were stored in amber plastic prescription bottles at two temperature conditions (5°C and 25°C). Samples were assayed initially, and on the following time points (days): 7, 14, 28, and 42. Physical data such as pH, viscosity, and appearance were also noted. Microbiological stability was tested. All measurements were obtained in triplicate. A stable extemporaneous product is defined as one that retains at least 90% of the initial drug concentration throughout the sampling period and is protected against microbial growth. The study showed that pyrimethamine concentrations did not go below 96% of the label claim (initial drug concentration) at both temperatures studied. No microbial growth was observed. pH values remained constant. The viscosity of the suspensions allowed easy re-dispersal of the drug particles upon shaking. This study demonstrates that pyrimethamine is physically, chemically, and microbiologically stable in PCCA SuspendIt for 42 days stored in the refrigerator and at room temperature, thus providing a viable, compounded alternative for pyrimethamine in a liquid dosage form.
Assuntos
Cromonas , Pirimetamina , Humanos , Composição de Medicamentos , Estabilidade de Medicamentos , Cromonas/química , Suspensões , Excipientes , Administração Oral , Cromatografia Líquida de Alta Pressão , Armazenamento de MedicamentosRESUMO
Objective: To explore the efficacy and safety of Iguratimod (IGU) intervention in the treatment of Ankylosing Spondylitis (AS). Methods: We used computer to search literature databases, collected randomized controlled trials (RCTs) related to IGU treatment of AS, and searched the relevant literature in each database until Sep. 2022. Two researchers independently carried out literature screening, data extraction, and evaluation and analysis of the risk of bias in the included studies, and then used Rev Man5.3 software for meta-analysis. The protocol is CRD42020220798. Results: A total of 10 RCTs involves in 622 patients were collected. The statistical analysis showed that IGU can decrease the BASDAI score (SMD -1.62 [-2.20, -1.05], P<0.00001. Quality of evidence: low), the BASFI score (WMD -1.30 [-1.48, -1.12], P<0.00001. Quality of evidence: low) and the VAS (WMD -2.01 [-2.83, -1.19], P<0.00001. Quality of evidence: very low). Meanwhile, the addition of IGU into the conventional therapy would not increase the adverse events (RR 0.65 [0.43, 0.98], P=0.04. Quality of evidence: moderate). Conclusion: IGU may be an effective and safe intervention for AS. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?, identifier CRD42020220798.
Assuntos
Espondilite Anquilosante , Humanos , Espondilite Anquilosante/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulfonamidas , CromonasRESUMO
Agarwood, a highly valuable resin/wood combination with diverse pharmacological activities but scarce supply, has a long history of being used as a medicine in several medical systems. Grafted Kynam agarwood (GKA) has been cultivated successfully recently and has the qualities meeting the definition of premium Kynam agarwood. However, there are few comprehensive comparisons between GKA and normal agarwood in terms of traits, global composition, and activity, and some key issues for GKA to be adopted into the traditional Chinese medical (TCM) system have not been elaborated. The two types of agarwood samples were evaluated in terms of trait characteristics, physicochemical indicators, key component groups, and global compositional profile. Furthermore, a molecular docking was performed to investigate the active ingredients. In vitro activity assays were performed to evaluate the activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by GKA and normal agarwood. The results revealed that, overall, the traits, microscopic characteristics, chemical composition types, and bioactivity between GKA and normal agarwood were similar. The main differences were the content of resin (ethanolic extract content), the content of key component groups, and the composition of the different parent structural groups of 2-(2-phenethyl) chromones (PECs). The contents of total PEC and ethanol extract content of GKA were significantly higher than those of normal agarwood. The MS-based high-throughput analysis revealed that GKA has higher concentrations of sesquiterpenes and flindersia-type 2-(2-phenylethyl) chromones (FTPECs) (m/z 250-312) than normal agarwood. Molecular docking revealed that parent structural groups of FTPECs activated multiple signaling pathways, including the AMPK pathway, suggesting that FTPECs are major active components in GKA. The aim of this paper is to describe the intrinsic reasons for GKA as a high-quality agarwood and a potential source for novel drug development. We combined high-throughput mass spectrometry and multivariate statistical analysis to infer the different components of the two types of agarwood. Then we combined virtual screening and in vitro activity to construct a component/pharmacodynamic relationship to explore the causes of the activity differences between agarwood with different levels of quality and to identify potentially valuable lead compounds. This strategy can also be used for the comprehensive study of other TCMs with different qualities.
Assuntos
Proteínas Quinases Ativadas por AMP , Thymelaeaceae , Simulação de Acoplamento Molecular , Thymelaeaceae/química , Cromonas/química , Madeira/química , Resinas Vegetais/análise , Extratos Vegetais/química , Flavonoides/químicaRESUMO
Six previously unprecedented 2-(2-phenylethyl)chromone-sesquiterpene hybrids, aquisinenins A-F (1 - 6), were isolated from the resinous wood of Aquilaria sinensis by a LC-MS-guided fractionation procedure. Their structures were determined by extensive spectroscopic analysis (1D and 2D NMR, UV, IR, and HRMS) and experimental and computed ECD data. Compounds 1 - 6 were rare dimeric 2-(2-phenylethyl)chromone-sesquiterpene derivatives featuring 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone hybridized with different sesquiterpene (eudesmane/guaiane type) moieties via ester bond. Furthermore, all the isolated compounds were evaluated for their protective effects on taurocholic acid (TCA)-induced GES-1 cell injury. The most effective aquisinenin F (6) was used to elucidate the involved mechanism on protection against TCA-induced gastric mucosal damage. Our results indicated that 6 protected against gastric mucosal cell insult by downregulation of the ER stress triggered by TCA.
Assuntos
Sesquiterpenos , Thymelaeaceae , Cromonas , Madeira/química , Flavonoides/química , Thymelaeaceae/química , Resinas Vegetais , Estrutura MolecularRESUMO
Agarwood is a dark resinous wood, produced when Aquilaria tree responds to wounding and microbial infection resulting in the accumulation of fragrant metabolites. Sesquiterpenoids and 2-(2-phenylethyl) chromones are the major phytochemicals in agarwood and Cytochrome P450s (CYPs) are one of the important enzymes in the biosynthesis of these fragrant chemicals. Thus, understanding the repertoire of CYP superfamily in Aquilaria can not only give insights into the fundamentals of agarwood formation, but can also provide a tool for the overproduction of the aroma chemicals. Therefore, current study was designed to investigate CYPs of an agarwood producing plant, Aquilaria agallocha. We identified 136 CYP genes from A. agallocha genome (AaCYPs) and classified them into 8 clans and 38 families. The promoter regions had stress and hormone-related cis-regulatory elements which indicate their participation in the stress response. Duplication and synteny analysis revealed segmental and tandem duplicated and evolutionary related CYP members in other plants. Potential members involved in the biosynthesis of sesquiterpenoids and phenylpropanoids were identified and found to be upregulated in methyl jasmonate-induced callus and infected Aquilaria trees by real-time quantitative PCR analyses. This study highlights the possible involvement of AaCYPs in agarwood resin development and their complex regulation during stress exposure.
Assuntos
Sesquiterpenos , Thymelaeaceae , Humanos , Terpenos/metabolismo , Cromonas , Sesquiterpenos/metabolismo , Thymelaeaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Madeira/metabolismoRESUMO
A highly efficient metal-free selective 1,4-addition reaction of difluoroenoxysilanes to chromones was developed using the low-cost and readily available HOTf as the catalyst, which is a facile and straightforward method to access valuable C2-difluoroalkylated chroman-4-one derivatives. Interestingly, the products could be readily converted to the difluorinated bioisostere of the natural product (S)-2,6-dimethylchroman-4-one and a difluorinated benzo-seven-membered heterocycle via the Schmidt rearrangement reaction. In addition, the in vitro anti-proliferative activities of these synthesized derivatives against human colon carcinoma cells (HCT116) revealed that compound 3g exhibited potent inhibitory effect on HCT116 cancer cells with an IC50 value of 6.37 µM, representing a novel lead compound for further structural optimization and biological evaluation.
Assuntos
Cromonas , Chumbo , Humanos , Relação Estrutura-Atividade , Cromonas/farmacologia , Cromonas/química , Células HCT116RESUMO
Two rare flavonoid-2-(2-phenylethyl)chromones and five new dimeric 2-(2-phenylethyl)chromones were isolated from ethanol extract of agarwood of Aquilaria walla by LC-MS-guided fractionation procedure. Their structures were established based on extensive spectroscopic methods including HRESIMS, 1D and 2D NMR, as well as by comparison with the literature. Compound 1 showed cytotoxic activity against five human cancer cell lines with IC50 values ranging from 13.40 to 28.96 µM with cisplatin as the positive control.
Assuntos
Cromonas , Thymelaeaceae , Humanos , Cromonas/farmacologia , Thymelaeaceae/química , Estrutura Molecular , Flavonoides/química , Espectrometria de Massas , Madeira/químicaRESUMO
Four new 2-(2-phenethyl)chromone dimers (1-4) were isolated from EtOAc extract of agarwood originating from Aquilaria filaria from Philippines. Their structures were elucidated by spectroscopic analysis (1D and 2D NMR, and HRESIMS) and comparison of the experimental and computed ECD curves. Compounds 1-4 exhibited inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells with IC50 values in the range from 33.94 to 57.53 µM.
Assuntos
Cromonas , Thymelaeaceae , Cromonas/farmacologia , Estrutura Molecular , Thymelaeaceae/química , Espectroscopia de Ressonância Magnética , Lipopolissacarídeos , Flavonoides/químicaRESUMO
Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals.
Assuntos
Alcaloides , Antineoplásicos , Arabidopsis , Animais , Arabidopsis/genética , Antineoplásicos/farmacologia , Cromonas/farmacologia , Cromonas/uso terapêutico , Alcaloides/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas , MamíferosRESUMO
To develop novel α-glucosidase inhibitors, a series of chromone-based phenylhydrazone and benzoylhydrazone derivatives were designed, synthesized, and evaluated their inhibitory effects on α-glucosidase. The target compounds were characterized using 1H NMR, 13C NMR, and high-resolution mass spectra. Some of the compounds showed a varying degree of α-glucosidase inhibitory activity with IC50 values ranging from 6.59 ± 0.09 to 158.55 ± 0.87 µM. Among them, compound 5c (IC50 = 6.59 ± 0.09 µM) was the most potent inhibitor by comparison with positive control acarbose (IC50 = 685.11 ± 7.46 µM). Enzyme kinetic, fluorescence analysis, circular dichroism spectra, and molecular docking techniques were employed to explain the underlying molecular mechanisms of 5c inhibition on α-glucosidase. In vivo sucrose-loading test showed that 5c could suppress the rise of blood glucose levels after loading sucrose in normal Kunming mice. The cytotoxicity assay indicated that 5c exhibited low cytotoxicity.
Assuntos
Hipoglicemiantes , alfa-Glucosidases , Camundongos , Animais , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Cromonas/farmacologia , Cromonas/química , Inibidores de Glicosídeo Hidrolases/química , Estrutura MolecularRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. The identification of effective antiviral drugs remains an urgent medical need. In this context, here we report 17 new 1,4-benzopyrone derivatives, which have been designed, synthesized, and characterized for their ability to block the RNA-dependent RNA polymerase (RdRp) enzyme, a promising target for antiviral drug discovery. This compound series represents a good starting point for developing non-nucleoside inhibitors of RdRp. Compounds 4, 5, and 8 were the most promising drug-like candidates with good potency in inhibiting RdRp, improved in vitro pharmacokinetics compared to the initial hits, and no cytotoxicity effects on normal cell (HEK-293). Compound 8 (ARN25592) stands out as the most promising inhibitor. Our results indicate that this new chemical class of 1,4-benzopyrone derivatives deserves further exploration towards novel and potent antiviral drugs for the treatment of SARS-CoV-2 and potentially other viruses.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células HEK293 , RNA Polimerase Dependente de RNA , Antivirais/química , Cromonas , Simulação de Acoplamento MolecularRESUMO
The crude extract of the Arctic fungus Phoma muscivora CPCC 401424 displayed anti-influenza A virus activities which led us to investigated their secondary metabolites. Four new chromone derivatives, phomarcticones A-D (1-4) and five known chromone analogs (5-9) have been isolated from Arctic fungus Phoma muscivora CPCC 401424. Compounds 3 and 4 possess rare sulfoxide groups in chromone derivatives. Their structures and absolute configurations were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, and comparison with reported data. Compounds 3, 7, and 9 showed significant anti-influenza A virus activities with the IC50 values of 24.4, 4.2, and 2.7 µM, respectively.
Assuntos
Antivirais , Cromonas , Antivirais/química , Cromonas/farmacologia , Cromonas/química , Fungos , Dicroísmo Circular , Estrutura MolecularRESUMO
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.