Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Antonie Van Leeuwenhoek ; 115(8): 1059-1072, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35732971

RESUMO

Four novel strains were isolated: PWU4T and PWU20T were both from soil in Germany, PWU5T was isolated from soil in India and PWU37T was obtained from sheep faeces collected on the Island of Crete. Cells of each were observed to be Gram-negative, strictly aerobic, rod shaped, and to grow optimally between 28 and 34 °C, between pH 7.0 and 8.0 and without the addition of NaCl. The strains were found to be catalase and oxidase-negative and able to grow on most mono- and disaccharides, a few polysaccharides and organic acids. Their predominant menaquinone was identified as MK-7. Their major fatty acids were identified as C16:1 ω7c (PWU4T and PWU20T) and C16:1 ω5c (PWU5T and PWU37T). The DNA G + C contents of strains PWU4T, PWU20T, PWU5T and PWU37T were determined to be 50.2 mol%, 51.6 mol %, 39.8 mol% and 53.8 mol%, respectively. The 16S rRNA gene sequence analysis revealed that the close relatives Ohtaekwangia koreensis 3B-2T and Ohtaekwangia kribbensis 10AOT share less than 93.8% sequence similarity. The strains were classified in two groups, where PWU4T and PWU20T share 93.0% sequence similarity, and PWU5T and PWU37T share 97.5% sequence similarity. However, the members of each group were concluded to represent different species based on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We propose that the four strains represent four novel species of two new genera in the family Cytophagaceae. The type species of the novel genus Chryseosolibacter is Chryseosolibacter histidini gen. nov., sp. nov. with the type strain PWU4T (= DSM 111594T = NCCB 100798T), whilst strain PWU20T (= DSM 111597T = NCCB 100800T) is the type strain of a second species, Chryseosolibacter indicus sp. nov. The type species of the novel genus Dawidia is Dawidia cretensis gen. nov., sp. nov. with the type strain PWU5T (= DSM 111596T = NCCB 100799T), whilst strain PWU37T (= DSM 111595T = NCCB 100801T) is the type stain of a second species, Dawidia soli sp. nov.


Assuntos
Cytophagaceae , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ecossistema , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ovinos/genética , Solo , Vitamina K 2/análise
2.
Arch Microbiol ; 204(7): 368, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666310

RESUMO

Two novel bacterial strains BT175T and BT728T were isolated from soil collected in the Republic of Korea. Both strains were Gram stain negative, rod shaped, and had circular, convex, and pink-colored colonies. The 16S rRNA gene sequence similarity between the strains BT175T and BT728T was 93.6%, indicating that they represent a distinct species. 16S rRNA sequence analysis indicated that strains BT175T and BT728T belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia, phylum Bacteroidetes). Strain BT175T was closely related to Hymenobacter persicinus 1-3-3-3T (97.2%, 16S rRNA gene similarity), Hymenobacter knuensis 16F7C-2T (96.6%), and Hymenobacter daejeonensis PB105T (96.1%). Strain BT728T was closely related to Hymenobacter rigui KCTC 12533T (98.4%), Hymenobacter metallilatus 9PBR-2T (97.6%), and Hymenobacter perfusus LMG26000T (97.4%). Strain BT175T and BT728T were found to have the MK-7 as the major respiratory quinone. The DNA G + C content of strain BT175T was 61.6 mol% and BT728T was 59.6 mol%, respectively. Characterization based on polyphasic analysis indicated that strains BT175T and BT728T represent novel species of the genus Hymenobacter and the names Hymenobacter translucens sp. nov. and Hymenobacter pini sp. nov. are proposed. The type strain of Hymenobacter translucens is BT175T (= KCTC 72330T = NBRC 115441T) and Hymenobacter pini is BT728T (= KACC 22629T = NBRC 115444T).


Assuntos
Cytophagaceae , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
3.
Arch Microbiol ; 204(7): 369, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668215

RESUMO

A Gram-negative, red-colored, and rod-shaped bacterial strain, DH14T, was isolated from a eutrophic reservoir. The 16S rRNA gene sequence analysis showed that strain DH14T was most closely related to Hymenobacter terrigena (98.3% similarity) and Hymenobacter terrae (98.1%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain DH14T and its related type strains were below 82.9% and 27.2%, respectively. Strain DH14T contained iso-C15:0 (32.6%), anteiso-C15:0 (14.0%), and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) (25.8%) as major cellular fatty acids. The main polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids, and one unidentified lipid. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G + C content was 62.1%. These evidences support the classification of strain DH14T as a novel species in the genus Hymenobacter, for which the name Hymenobacter cyanobacteriorum sp. nov. is proposed. The type strain is DH14T (= KCTC 92040T = LMG 32425T).


Assuntos
Cianobactérias , Cytophagaceae , Técnicas de Tipagem Bacteriana , Cianobactérias/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Água Doce , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2
4.
Arch Microbiol ; 204(6): 356, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654990

RESUMO

Two bacterial strains, 9H-EGSET and 15D-MOBT, were isolated from small freshwater habitats located near Salzburg, Austria. They showed the highest 16S rRNA sequence similarities of 100% and 99.9%, respectively, with type strains of species of the genus Aquirufa (Bacteroidota). Genome-based phylogenetic reconstructions with 119 amino acid sequences assigned the new taxa to the two distinct branches of the genus Aquirufa. Whole-genome average nucleotide identities were calculated with all possible pairs belonging to the genus. Values between 75.4% and 88.6% revealed that the two new strains represent each a new species. Like all, so far described members of the genus, they grew aerobically and chemoorganotrophically, were rod-shaped, red-pigmented, and motile by gliding, and showed genome sizes of about 3 Mbp and G + C values of about 40%. They could be distinguished by some phenotypic and chemotaxonomic features from their nearest related species. Until now, strain 9H-EGSET is the only one among the Aquirufa strains which contained traces of MK8 as respiratory quinone, and strain 15D-MOBT is the only one that formed tiny orange globules in liquid medium. The genome of strain 9H-EGSET comprised genes for the complete light-harvesting rhodopsin / retinal system, in the case of 15D-MOBT genes predicted for a nitrous oxide reductase were present. For the two new species of the genus Aquirufa, we propose to establish the names Aquirufa lenticrescens for strain 9H-EGSET (= JCM 34077 T = CIP 111926 T) and Aquirufa aurantiipilula for strain 15D-MOBT (= JCM 34078 T = CIP 111925 T).


Assuntos
Cytophagaceae , Bactérias , Água Doce , Filogenia , RNA Ribossômico 16S/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35230236

RESUMO

Two bacterial strains, designated BT189T and BT664T, were isolated from soil sampled in the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strains BT189T and BT664T belonged to the genus Hymenobacter, family Hymenobacteraceae (order Cytophagales). The 16S rRNA genes of the two strains shared a sequence similarity of 93.7 %. The closely related species of strain BT189T were Hymenobacter rubidus DG7BT (97.1 % 16S rRNA similarity) and Hymenobacter terrae DG7AT (96.7 %). The closest related species to strain BT664T were Hymenobacter sedentarius DG5BT (95.3 %) and Hymenobacter terrenus MIMtkLc17T (95.2 %). The genome sizes of strains BT189T and BT664T were 5 285 287 and 5 475 357 bp, respectively. The genomic DNA G+C contents of strains BT189T and BT664T were 63.2 and 59.3 mol%, respectively. The main fatty acids of strain BT189T were iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), and those of strain BT664T were iso-C15 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). The main polar lipid in both strains was phosphatidylethanolamine and the predominant respiratory quinone was MK-7, supporting the affiliation of these strains with the genus Hymenobacter. Based on the results of biochemical, chemotaxonomic and phylogenetic analyses, two novel species, Hymenobacter armeniacus BT189T (=KCTC 72341T=NBRC 114843T) and Hymenobacter montanus BT664T (KACC 21967T=NBRC 114856T), are proposed.


Assuntos
Cytophagaceae , Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35085061

RESUMO

Strain 3F2T was isolated from a soil sample obtained from the surface of Deception Island, Antarctica. The isolate was a Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, and its colonies were red to pink in colour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 3F2T belonged to the genus Hymenobacter, family Hymenobacteraceae and was most closely related to Hymenobacter sedentarius DG5BT (97.0% sequence similarity), Hymenobacter soli PB17T (96.9%), Hymenobacter terrae DG7AT (96.8%) and Hymenobacter rufus S1-2-2-6T (96.5%). Growth occurred at 4-20 °C (optimum, 10 °C), up to 1.0 % (w/v) NaCl (optimum, 0%) and pH 6.0-8.0 (optimum, pH 7.0). The chemotaxonomic characteristics of strain 3F2T, which had MK-7 as its predominant menaquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), iso-C15:0, anteiso-C15:0 and C16:1 ω5c as its major fatty acids, were consistent with classification in the genus Hymenobacter. The polar lipid profile of strain 3F2T comprised phosphatidylethanolamine, two unidentified aminolipids, two unidentified aminophospholipids and three unidentified polar lipids. The genome of strain 3F2T was 6.56 Mbp with a G+C content of 61.5 mol%. Average nucleotide identity (ANI) values between 3F2T and the other species of the genus Hymenobacter were found to be low (ANIm <87.0%, ANIb <82.0% and OrthoANIu <83.0%). Furthermore, digital DNA-DNA hybridization and average amino acid identity values between strain 3F2T and the closely related species ranged from 20.0 to 26.3% and from 64.0 to 81.1 %, respectively. Based on the results of our phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain 3F2T represents a novel species within the genus Hymenobacter, for which the name Hymenobacter terricola sp. nov. is proposed. The type strain is 3F2T (=KCTC 72468T=CGMCC 1.13716T).


Assuntos
Cytophagaceae , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/classificação , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Artigo em Inglês | MEDLINE | ID: mdl-35061583

RESUMO

Bacterial strain NST-14T, isolated from a freshwater fish pond in Taiwan, was characterized using a polyphasic taxonomy approach. The strain was Gram-stain-negative, strictly aerobic, non-motile, rod-shaped and formed pink colonies. Optimal growth occurred at 30 °C, pH 7 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain NST-14T formed a phylogenetic lineage in the genus Hymenobacter. Analysis of 16S rRNA gene sequences showed that strain NST-14T had the highest similarity to Hymenobacter actinosclerus CCUG 39621T (97.7%), Hymenobacter amundsenii P5136T (97.3%) and Hymenobacter humicola P6312T (96.9%). Strain NST-14T showed 75.1-85.3 % average nucleotide identity, 73.7-89.8 % average amino acid identity and 14.5-26.0 % digital DNA-DNA hybridization with the type strains of other closely related Hymenobacter species. Strain NST-14T contained iso-C15 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as the predominant fatty acids. The major hydroxyl fatty acids were iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The polar lipids were phosphatidylethanolamine, one unidentified glycolipid, four unidentified aminophospholipids, one unidentified aminolipid, two unidentified phospholipids and three unidentified lipids. The major polyamine was homospermidine. The major isoprenoid quinone was MK-7. The DNA G+C content of the genomic DNA was 62.4 mol%. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain NST-14T should be classified as a novel species of the genus Hymenobacter, for which the name Hymenobacter piscis sp. nov. is proposed. The type strain is NST-14T (=BCRC 81249T=LMG 31686T).


Assuntos
Cytophagaceae , Filogenia , Lagoas , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Peixes , Fosfolipídeos/química , Lagoas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan
8.
Science ; 375(6577): 221-225, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025633

RESUMO

Gasdermin proteins form large membrane pores in human cells that release immune cytokines and induce lytic cell death. Gasdermin pore formation is triggered by caspase-mediated cleavage during inflammasome signaling and is critical for defense against pathogens and cancer. We discovered gasdermin homologs encoded in bacteria that defended against phages and executed cell death. Structures of bacterial gasdermins revealed a conserved pore-forming domain that was stabilized in the inactive state with a buried lipid modification. Bacterial gasdermins were activated by dedicated caspase-like proteases that catalyzed site-specific cleavage and the removal of an inhibitory C-terminal peptide. Release of autoinhibition induced the assembly of large and heterogeneous pores that disrupted membrane integrity. Thus, pyroptosis is an ancient form of regulated cell death shared between bacteria and animals.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Piroptose , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Bradyrhizobium/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Cytophagaceae/química , Modelos Moleculares , Myxococcales/química , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
9.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34846279

RESUMO

Strain Q3-56T, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56T grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56T belonged to the genus Dyadobacter. Strain Q3-56T showed the highest sequence similarities to Dyadobacter luticola T17T (96.58 %), Dyadobacter ginsengisoli Gsoil 043T (96.50 %), Dyadobacter flavalbus NS28T (96.43 %) and Dyadobacter bucti QTA69T (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56T was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1 ω7c/C16 : 1 ω6c), iso-C15 : 0, C16 : 1 ω5c and iso-C16 : 1 3-OH. On the basis of the evidence presented in this study, a novel species of the genus Dyadobacter, Dyadobacter sandarakinus sp. nov., is proposed, with the type strain Q3-56T (=CCTCC AB 2019271T=KCTC 72739T). Emended descriptions of Dyadobacter alkalitolerans, Dyadobacter koreensis and Dyadobacter psychrophilus are also provided.


Assuntos
Cytophagaceae/classificação , Filogenia , Microbiologia do Solo , Tundra , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Antonie Van Leeuwenhoek ; 114(10): 1647-1655, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34342780

RESUMO

Two novel Gram-negative bacterial strains BT190T and BT191 were isolated from soil collected in Uijeongbu city (37°44'55″N, 127°02'20″E), Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT190T and BT191 belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia). The level of 16S rRNA gene sequence similarity between the strains BT190T and BT190 was 99.5%. The strains BT190T and BT191 were closely related to Hymenobacter swuensis DY53T (97.0% 16S rRNA gene similarity), Hymenobacter metallilatus 9PBR-2 T (96.8%), Hymenobacter tibetensis XTM003T (96.8%) and Hymenobacter yonginensis HMD1010T (96.6%). The genome size of strain BT190T was 4,859,864 bp. The DNA G+C content of strain BT190T was 55.3 mol%. Bacterial growth was observed at 4-30 °C (optimum 25 °C) and pH 6.0-9.0 (optimum, pH 6.0-7.0) on R2A agar. Colonies of strains BT190T and BT191 were raised, smooth, circular and red-pink colored. The sole respiratory quinone of strain BT190T was MK-7 and the predominant cellular fatty acids were iso-C15:0, C16:1 ω5c, summed feature 3 (C16:1 ω6c / C16:1 ω7c) and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B). The major polar lipids of strain BT190T were aminophospholipid (APL) and phosphatidylethanolamine (PE). Based on the chemotaxonomic, biochemical, and phylogenetic analysis, strains BT190T and BT191 can be suggested as a novel bacterial species within the genus Hymenobacter, for which the name Hymenobacter puniceus sp. nov is proposed. The type strain of Hymenobacter puniceus is BT190T (= KCTC 72342 T = NBRC 114860 T).


Assuntos
Cytophagaceae , Solo , Bacteroidetes/genética , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo
11.
Antonie Van Leeuwenhoek ; 114(10): 1585-1593, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292424

RESUMO

An aerobic, Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, and light pink-colored bacterial strain, designated TS19T, was isolated from a sand sample obtained from a coastal sand dune after exposure to 3 kGy of gamma radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Hymenobacter and was most closely related to H. wooponensis WM78T (98.3% similarity). Strain TS19T and H. wooponensis showed resistance to gamma radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 7.3 kGy and 3.5 kGy, respectively. The genome of strain TS19T consists of one contig with 4,879,662 bp and has a G + C content of 56.2%. The genome contains 3,955 protein coding sequences, 44 tRNAs, and 12 rRNAs. The predominant fatty acids of strain TS19T were iso-C15:0, summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and C16:1 ω5c. The major polar lipids were phosphatidylethanolamine, and one unidentified aminophospholipid. The main respiratory quinone was menaquinone-7. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain TS19T represents a novel species, for which the name Hymenobacter taeanensis sp. nov. is proposed. The type strain is TS19T (= KCTC 72897T = JCM 34023T).


Assuntos
Cytophagaceae , Areia , Técnicas de Tipagem Bacteriana , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
12.
Curr Microbiol ; 78(8): 3334-3341, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34259886

RESUMO

Two novel Gram-stain-negative, non-motile, aerobic, rod-shaped, circular, convex, red-colored and UV-tolerant strains BT594T and BT646T were isolated from soil collected in Guri city (37° 36' 0″ N, 127° 9' 0″ E) and Gwangju city (37° 22' 0″ N, 127° 17' 0″ E), respectively, South Korea. 16S rDNA sequence analysis indicated that strains BT594T and BT646T belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia, phylum Bacteroidetes, kingdom Bacteria). The 16S rDNA gene sequence similarity between the two strains BT594T and BT646T was 96.2%. The strain BT594T was closely related to Hymenobacter psychrotolerans Tibet-IIU11T (97.0% 16S rDNA gene similarity) and Hymenobacter tibetensis XTM003T (96.3%). The strain BT646T was closely related to Hymenobacter psychrotolerans Tibet-IIU11T (98.6%), Hymenobacter kanuolensis T-3 T (96.8%) and Hymenobacter perfusus LMG 26000 T (96.7%). The two strains were found to have the same quinone system, with MK-7 as the major respiratory quinone. The major polar lipids of strains BT594T and BT646T were phosphatidylethanolamine (PE) and aminophospholipids (APL). The major cellular fatty acids of strain BT594T were anteiso-C15:0 (17.9%), iso-C15:0 (16.1%) and summed feature 3 (C16:1 ω6c / C16:1 ω7c) (10.0%). The major cellular fatty acids of strain BT646T were summed feature 3 (C16:1 ω6c / C16:1 ω7c) (18.3%), C16:0 (17.2%) and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B) (14.5%). Based on the polyphasic analysis, strains BT594T and BT646T can be suggested as two novel bacterial species within the genus Hymenobacter and the proposed names are Hymenobacter guriensis and Hymenobacter duratus, respectively. The type strain of Hymenobacter guriensis is BT594T (= KCTC 21863 T = NBRC 114853 T) and the type strain of Hymenobacter duratus is BT646T (= KCTC 21915 T = NBRC 114854 T).


Assuntos
Cytophagaceae , Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes , Composição de Bases , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo , Tibet
13.
Artigo em Inglês | MEDLINE | ID: mdl-34309507

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterial strain (UP-52T) was isolated from hydrocarbon-polluted groundwater located near an oil refinery in Tiszaujvaros, Hungary. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Dyadobacter in the family Cytophagaceae. Its closely related species are Dyadobacter frigoris (98.00 %), Dyadobacter koreensis (97.64 %), Dyadobacter psychrophilus (97.57 %), Dyadobacter ginsengisoli (97.56 %) and Dyadobacter psychrotolerans (97.20 %). The predominant fatty acids are summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω7c/C16 : 1 ω6c), C15 : 0 iso, C16 : 1 ω5c and C17 : 0 iso 3OH. The predominant respiratory quinone detected in strain UP-52T is quinone MK-7. The dominant polar lipids are glycolipid, phosphoaminolipid, phospholipid and aminolipid. The DNA G+C content is 40.0 mol%. Flexirubin-type pigment was present. Based on these phenotypic, chemotaxonomic and phylogenetic results, UP-52T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter subterraneus sp. nov. is proposed. The type strain is UP-52T (=NCAIM B.02653T=CCM 9030T).


Assuntos
Cytophagaceae/classificação , Água Subterrânea/microbiologia , Indústria de Petróleo e Gás , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Hidrocarbonetos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes Químicos da Água
14.
Sci Rep ; 11(1): 13278, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168257

RESUMO

Spirosoma linguale is a gram-negative, coiled bacterium belonging to the family Cytophagaceae. Its coiled morphology is unique in contrast to closely related bacteria belonging to the genus Spirosoma, which have a short, rod-shaped morphology. The mechanisms that generate unique cell morphology are still enigmatic. In this study, using the Spirosoma linguale ATCC33905 strain, we isolated ß-lactam (cefoperazone and amoxicillin)-resistant clones. These clones showed two different cell morphological changes: relatively loosely curved cells or small, horseshoe-shaped cells. Whole-genome resequencing analysis revealed the genetic determinants of ß-lactam resistance and changes in cell morphology. The loose-curved clones commonly had mutations in Slin_5958 genes encoding glutamyl-tRNA amidotransferase B subunit, whereas the small, horseshoe-shaped clones commonly had mutations in either Slin_5165 or Slin_5509 encoding pyruvate dehydrogenase (PDH) components. Two clones, CFP1ESL11 and CFL5ESL4, which carried only one mutation in Slin_5958, showed almost perfectly straight, rod-shaped cells in the presence of amoxicillin. This result suggests that penicillin-binding proteins targeted by amoxicillin play an important role in the formation of a coiled morphology in this bacterium. In contrast, supplementation with acetate did not rescue the growth defect and abnormal cell size of the CFP5ESL9 strain, which carried only one mutation in Slin_5509. These results suggest that PDH is involved in cell-size maintenance in this bacterium.


Assuntos
Cytophagaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Cytophagaceae/genética , Cytophagaceae/ultraestrutura , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia
15.
Antonie Van Leeuwenhoek ; 114(7): 1155-1164, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33969460

RESUMO

Two novel Gram-negative, rod-shaped bacterial strains BT702T and BT704T were isolated from soil collected in Jeongseon (37° 22' 45″ N, 128° 39' 53″ E), Gangwon province, South Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT702T and BT704T belong to distinct lineage within the genus Spirosoma (family Cytophagaceae, order Cytophagales, class Cytophagia and phylum Bacteroidetes). The strain BT702T was closely related to Spirosoma flavus 15J11-2T (96.7% 16S rRNA gene similarity) and Spirosoma metallilatum TX0405T (93.3%). The strain BT704T was closely related to Spirosoma koreense 15J8-5T (94.6%), Spirosoma endophyticum DSM 26130T (93.8%) and Spirosoma humi S7-4-1T (93.8%). The genome sizes of type strains BT702T and BT704T are 8,731,341 bp and 8,221,062 bp, respectively. The major cellular fatty acids of strains BT702T and BT704T were C16:1 ω5c and summed feature 3 (C16:1 ω6c/C16:1 ω7c). The strains were found to have the same quinone system, with MK-7 as the major respiratory quinone. The major polar lipids of strain BT702T was identified to be phosphatidylethanolamine (PE), aminophospholipid (APL) and aminolipid (AL), while that of strain BT704T consisted of phosphatidylethanolamine (PE) and aminophospholipid (APL). Based on the polyphasic analysis (phylogenetic, chemotaxonomic and biochemical), strains BT702T and BT704T can be suggested as two new bacterial species within the genus Spirosoma and the proposed names are Spirosoma profusum and Spirosoma validum, respectively. The type strain of Spirosoma profusum is BT702T (= KCTC 82115T = NBRC 114859T) and type strain of Spirosoma validum is BT704T (= KCTC 82114T = NBRC 114966T).


Assuntos
Cytophagaceae , Solo , Composição de Bases , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo
16.
Antonie Van Leeuwenhoek ; 114(7): 1025-1031, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33948755

RESUMO

Two novel Gram-negative bacterial strains BT442T and BT584 were isolated from dry soil collected in mountains Busan and Guri, Korea during wintertime. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT442T and BT584 both belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia). Strain BT442T was closely related to Hymenobacter soli PB17T (98.0% 16S rRNA gene similarity) and Hymenobacter terrae POA9T (97.6%). No other recognized bacterial species showed more than 97% 16S rRNA gene sequence similarity to strains BT442T. The genome size of strain BT442T was 5,143,362 bp. Bacterial growth was observed at 10-30 °C (optimum 25 °C), pH 6.0-8.0 (optimum pH 6.0) in R2A agar and in the presence up to 1% NaCl. The major cellular fatty acids of strains BT442T and BT584 were iso-C15:0, anteiso-C15:0 and summed feature 3 (C16:1 ω6c / C16:1 ω7c). In addition, their predominant respiratory quinone was MK-7. The major polar lipids of strains BT442T and BT584 were identified to be phosphatidylethanolamine, aminophospholipid, and aminolipid. Based on the biochemical, chemotaxonomic, and phylogenetic analyses, strains BT442T and BT584 are novel bacterial species within the genus Hymenobacter, and the proposed name is Hymenobacter negativus. The strain type of Hymenobacter negativus is BT442T (= KCTC 72902T = NBRC XXXXT).


Assuntos
Cytophagaceae , Solo , Bacteroidetes , Composição de Bases , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo
17.
Antonie Van Leeuwenhoek ; 114(7): 1131-1139, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34041640

RESUMO

Three Gram-stain-negative, aerobic, circular, convex, red-colored and rod-shaped bacterial strains, designated BT439T, BT662T and BT683T were obtained from soil collected in South Korea. The phylogenetic analysis based on 16S rRNA gene sequences of the strains revealed a distinct lineage within the genus Hymenobacter. The complete genome sequence of strains BT439T, BT662T and BT683T is 5,542,738 bp, 5,964,541 bp, and 5,192,601 bp size, respectively. All three strains were found to have MK-7 as the major respiratory quinone. The major polar lipids of strains BT439T and BT662T were identified as phosphatidylethanolamine, aminophospholipids and amino lipids. Strain BT683T contained phosphatidylethanolamine. The major cellular fatty acids of strain BT439T were iso-C15:0, summed feature 3 (C16:1 ω6c/C16:1 ω7c) and anteiso-C15:0; strain BT662T possessed iso-C15:0 and summed feature 3 (C16:1 ω6c/C16:1 ω7c); strain BT683T were summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:1 ω5c, iso-C15:0 and anteiso-C15:0. Based on the polyphasic analysis, strains BT439T, BT662T and BT683T can be suggested as three novel bacterial species within the genus Hymenobacter and the proposed names are Hymenobacter properus sp. nov., Hymenobacter ruricola sp. nov. and Hymenobacter jeongseonensis sp. nov., respectively. The type strain of Hymenobacter properus is BT439T (= KCTC 72900T = NBRC 114849T), Hymenobacter ruricola is BT662T (= KACC 21966T = NBRC 114855T) and the type strain of Hymenobacter jeongseonensis is BT683T (= KACC 22013T = NBRC xxxxxT).


Assuntos
Cytophagaceae , Solo , Composição de Bases , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia do Solo
18.
Nucleic Acids Res ; 49(17): 9607-9624, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33880546

RESUMO

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2'-PO4 to NAD+ yielding RNA 2'-OH and ADP-ribose-1',2'-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 µM), ADP-ribose (∼96 µM) and ADP (∼123 µM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2'-PO4 (mimicking the substrate RNA 2'-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ ß-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.


Assuntos
Proteínas de Bactérias/química , Cytophagaceae/enzimologia , NAD/química , Fosfotransferases/química , Apoenzimas/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligantes , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/química , Fosfotransferases/genética , Ligação Proteica , Conformação Proteica , RNA/metabolismo
19.
Ecotoxicol Environ Saf ; 213: 112039, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636469

RESUMO

Chlorpyrifos (O, O-diethyl O-3, 5, 6-trichloropyridin-2-yl phosphorothioate) is a toxic and chlorinated organic contaminant in soils across the globe. The present study examines the chlorpyrifos (CP) degrading potential of gram-negative bacterium Dyadobacter jiangsuensis (MTCC 12851), to be a promising and sustainable remedial approach. The proliferation of D. jiangsuensis in the chlorpyrifos spiked minimal salt media indicated the ability of this strain to utilize CP as a sole carbon source and also confirmed the utilization of 3,5,6- trichloro-2-pyridinyl (TCP) through silver nitrate assay. The strain 12851 degraded 80.36% and 76.93% chlorpyrifos (CP) in aqueous medium and soil environment, respectively. The water dispersible granules (WDG) of 45% (v/w) inoculum (bacterial suspension) were developed using talcum powder, acacia gum and alginic acid as key ingredients. The formulated strain (12851) achieved 21.13% enhanced CP degradation in soil under microcosm condition as compared to the unformulated one on 15th day of the treatment. The intermediate metabolites namely 3,5,6-trichloro-2-pyridinol (TCP), tetrahydropyridine, thiophosphate and phenol, 1, 3-bis (1,1-dimethylethyl) were detected during the CP degradation. The current investigation reveals D. jiangsuensis as a potential microbe for CP degradation and opens up the possibility of exploiting its formulations to remediate the CP polluted soils.


Assuntos
Biodegradação Ambiental , Clorpirifos/metabolismo , Cytophagaceae/fisiologia , Poluentes do Solo/metabolismo , Solo
20.
Sci Rep ; 11(1): 1629, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452291

RESUMO

We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Florestas , Biodiversidade , Análise por Conglomerados , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , Água Doce/microbiologia , Lactococcus/genética , Lactococcus/isolamento & purificação , Mycoplasma/genética , Mycoplasma/isolamento & purificação , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...