Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.214
Filtrar
1.
Commun Biol ; 7(1): 790, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951602

RESUMO

Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model's predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.


Assuntos
Encéfalo , Criatividade , Eletroencefalografia , Descanso , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Adulto Jovem , Descanso/fisiologia , Conectoma/métodos
2.
Sci Rep ; 14(1): 15080, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956280

RESUMO

Plyometric training is characterized by high-intensity exercise which is performed in short term efforts divided into sets. The purpose of the present study was twofold: first, to investigate the effects of three distinct plyometric exercise protocols, each with varying work-to-rest ratios, on muscle fatigue and recovery using an incline-plane training machine; and second, to assess the relationship between changes in lower limb muscle strength and power and the biochemical response to the three exercise variants employed. Forty-five adult males were randomly divided into 3 groups (n = 15) performing an exercise of 60 rebounds on an incline-plane training machine. The G0 group performed continuous exercise, while the G45 and G90 groups completed 4 sets of 15 repetitions, each set lasting 45 s with 45 s rest in G45 (work-to-rest ratio of 1:1) and 90 s rest in G90 (1:2 ratio). Changes in muscle torques of knee extensors and flexors, as well as blood lactate (LA) and ammonia levels, were assessed before and every 5 min for 30 min after completing the workout. The results showed significantly higher (p < 0.001) average power across all jumps generated during intermittent compared to continuous exercise. The greatest decrease in knee extensor strength immediately post-exercise was recorded in group G0 and the least in G90. The post-exercise time course of LA changes followed a similar pattern in all groups, while the longer the interval between sets, the faster LA returned to baseline. Intermittent exercise had a more favourable effect on muscle energy metabolism and recovery than continuous exercise, and the work-to-rest ratio of 1:2 in plyometric exercises was sufficient rest time to allow the continuation of exercise in subsequent sets at similar intensity.


Assuntos
Fadiga Muscular , Força Muscular , Exercício Pliométrico , Descanso , Humanos , Masculino , Descanso/fisiologia , Fadiga Muscular/fisiologia , Adulto , Força Muscular/fisiologia , Exercício Pliométrico/métodos , Adulto Jovem , Músculo Esquelético/fisiologia , Ácido Láctico/sangue , Amônia/sangue , Exercício Físico/fisiologia
3.
Sci Rep ; 14(1): 15154, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956297

RESUMO

Historically, the analysis of stimulus-dependent time-frequency patterns has been the cornerstone of most electroencephalography (EEG) studies. The abnormal oscillations in high-frequency waves associated with psychotic disorders during sensory and cognitive tasks have been studied many times. However, any significant dissimilarity in the resting-state low-frequency bands is yet to be established. Spectral analysis of the alpha and delta band waves shows the effectiveness of stimulus-independent EEG in identifying the abnormal activity patterns of pathological brains. A generalized model incorporating multiple frequency bands should be more efficient in associating potential EEG biomarkers with first-episode psychosis (FEP), leading to an accurate diagnosis. We explore multiple machine-learning methods, including random-forest, support vector machine, and Gaussian process classifier (GPC), to demonstrate the practicality of resting-state power spectral density (PSD) to distinguish patients of FEP from healthy controls. A comprehensive discussion of our preprocessing methods for PSD analysis and a detailed comparison of different models are included in this paper. The GPC model outperforms the other models with a specificity of 95.78% to show that PSD can be used as an effective feature extraction technique for analyzing and classifying resting-state EEG signals of psychiatric disorders.


Assuntos
Eletroencefalografia , Transtornos Psicóticos , Máquina de Vetores de Suporte , Humanos , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico , Eletroencefalografia/métodos , Feminino , Masculino , Adulto , Adulto Jovem , Descanso/fisiologia , Aprendizado de Máquina , Encéfalo/fisiopatologia , Adolescente , Processamento de Sinais Assistido por Computador
4.
J Med Internet Res ; 26: e49530, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963936

RESUMO

BACKGROUND: Circadian rhythm disruptions are a common concern for poststroke patients undergoing rehabilitation and might negatively impact their functional outcomes. OBJECTIVE: Our research aimed to uncover unique patterns and disruptions specific to poststroke rehabilitation patients and identify potential differences in specific rest-activity rhythm indicators when compared to inpatient controls with non-brain-related lesions, such as patients with spinal cord injuries. METHODS: We obtained a 7-day recording with a wearable actigraphy device from 25 poststroke patients (n=9, 36% women; median age 56, IQR 46-71) and 25 age- and gender-matched inpatient control participants (n=15, 60% women; median age 57, IQR 46.5-68.5). To assess circadian rhythm, we used a nonparametric method to calculate key rest-activity rhythm indicators-relative amplitude, interdaily stability, and intradaily variability. Relative amplitude, quantifying rest-activity rhythm amplitude while considering daily variations and unbalanced amplitudes, was calculated as the ratio of the difference between the most active 10 continuous hours and the least active 5 continuous hours to the sum of these 10 and 5 continuous hours. We also examined the clinical correlations between rest-activity rhythm indicators and delirium screening tools, such as the 4 A's Test and the Barthel Index, which assess delirium and activities of daily living. RESULTS: Patients who had a stroke had higher least active 5-hour values compared to the control group (median 4.29, IQR 2.88-6.49 vs median 1.84, IQR 0.67-4.34; P=.008). The most active 10-hour values showed no significant differences between the groups (stroke group: median 38.92, IQR 14.60-40.87; control group: median 31.18, IQR 18.02-46.84; P=.93). The stroke group presented a lower relative amplitude compared to the control group (median 0.74, IQR 0.57-0.85 vs median 0.88, IQR 0.71-0.96; P=.009). Further analysis revealed no significant differences in other rest-activity rhythm metrics between the two groups. Among the patients who had a stroke, a negative correlation was observed between the 4 A's Test scores and relative amplitude (ρ=-0.41; P=.045). Across all participants, positive correlations emerged between the Barthel Index scores and both interdaily stability (ρ=0.34; P=.02) and the most active 10-hour value (ρ=0.42; P=.002). CONCLUSIONS: This study highlights the relevance of circadian rhythm disruptions in poststroke rehabilitation and provides insights into potential diagnostic and prognostic implications for rest-activity rhythm indicators as digital biomarkers.


Assuntos
Ritmo Circadiano , Descanso , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Ritmo Circadiano/fisiologia , Actigrafia/métodos , Estudos de Casos e Controles
5.
J Prev Alzheimers Dis ; 11(4): 1140-1147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044526

RESUMO

BACKGROUND: Resting heart rate (RHR), has been related to increased risk of dementia, but the relationship between RHR and brain age is unclear. OBJECTIVE: We aimed to investigate the association of RHR with brain age and brain age gap (BAG, the difference between predicted brain age and chronological age) assessed by multimodal Magnetic Resonance Imaging (MRI) in mid- and old-aged adults. DESIGN: A longitudinal study from the UK Biobank neuroimaging project where participants underwent brain MRI scans 9+ years after baseline. SETTING: A population-based study. PARTICIPANTS: A total of 33,381 individuals (mean age 54.74 ± 7.49 years; 53.44% female). MEASUREMENTS: Baseline RHR was assessed by blood pressure monitor and categorized as <60, 60-69 (reference), 70-79, or ≥80 beats per minute (bpm). Brain age was predicted using LASSO through 1,079 phenotypes in six MRI modalities (including T1-weighted MRI, T2-FLAIR, T2*, diffusion-MRI, task fMRI, and resting-state fMRI). Data were analyzed using linear regression models. RESULTS: As a continuous variable, higher RHR was associated with older brain age (ß for per 1-SD increase: 0.331, 95% [95% confidence interval, CI]: 0.265, 0.398) and larger BAG (ß: 0.263, 95% CI: 0.202, 0.324). As a categorical variable, RHR 70-79 bpm and RHR ≥80 bpm were associated with older brain age (ß [95% CI]: 0.361 [0.196, 0.526] / 0.737 [0.517, 0.957]) and larger BAG (0.256 [0.105, 0.407] / 0.638 [0.436, 0.839]), but RHR< 60 bpm with younger brain age (-0.324 [-0.500, -0.147]) and smaller BAG (-0.230 [-0.392, -0.067]), compared to the reference group. These associations between elevated RHR and brain age were similar in both middle-aged (<60) and older (≥60) adults, whereas the association of RHR< 60 bpm with younger brain age and larger BAG was only significant among middle-aged adults. In stratification analysis, the association between RHR ≥80 bpm and older brain age was present in people with and without CVDs, while the relation of RHR 70-79 bpm to brain age present only in people with CVD. CONCLUSION: Higher RHR (>80 bpm) is associated with older brain age, even among middle-aged adults, but RHR< 60 bpm is associated with younger brain age. Greater RHR could be an indicator for accelerated brain aging.


Assuntos
Encéfalo , Frequência Cardíaca , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Idoso , Frequência Cardíaca/fisiologia , Estudos Longitudinais , Envelhecimento/fisiologia , Reino Unido , Neuroimagem , Descanso/fisiologia
6.
Obesity (Silver Spring) ; 32(8): 1551-1557, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045675

RESUMO

OBJECTIVE: This study investigated whether exposure to suboptimal gestational factors (SGFs) alters mechanical efficiency (ME) and substrate oxidation during rest and exercise in children as a mechanism contributing to obesity. METHODS: Data from the Quebec Adiposity and Lifestyle Investigation in Youth cohort were used. Children aged 8 to 10 years performed an incremental maximal cycling test with indirect calorimetry. Their ME was measured during submaximal and maximal effort. The substrate oxidation during rest and submaximal effort was also computed. ME and substrate oxidation results between children exposed to each SGF during pregnancy (gestational diabetes mellitus: n = 68; hypertensive disorders: n = 49; maternal smoking: n = 77) and nonexposed children (n = 370) were compared. RESULTS: No difference was observed for ME during submaximal (F[3,540] = 0.46, p = 0.713) and maximal effort (F[3,545] = 0.86, p = 0.463) between exposed and nonexposed children. The percentage contributions of lipids and carbohydrates did not differ during rest (F[3,545] =1.68, p = 0.169) or submaximal exercise (F[3,544] = 0.31, p = 0.534) between exposed and nonexposed children. CONCLUSIONS: Children exposed to investigated SGFs display a similar physiological response regarding ME and substrate oxidation during rest and exercise compared to nonexposed children. Future studies should confirm these novel results and continue investigating other research avenues to explain the higher risk of obesity in this population.


Assuntos
Diabetes Gestacional , Exercício Físico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Criança , Gravidez , Exercício Físico/fisiologia , Masculino , Quebeque , Diabetes Gestacional/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Calorimetria Indireta , Teste de Esforço , Descanso/fisiologia , Metabolismo Energético/fisiologia , Estudos de Coortes , Fumar , Obesidade Infantil/fisiopatologia , Obesidade/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/etiologia
7.
Sci Rep ; 14(1): 16820, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039219

RESUMO

Mild sleep deprivation is widespread in many societies worldwide. Electroencephalography (EEG) microstate analysis provides information on spatial and temporal characteristics of resting brain network, serving as an indicator of neurophysiological activities at rest. This study seeks to investigate potential neural markers in EEG following mild sleep deprivation of a single night using EEG microstate analysis. Six-minute resting EEG was conducted on thirty healthy adults within 6 hours of waking in the morning and after at least 18 h of sleep deprivation. Translated and validated Malay language Karolinska Sleepiness Scale was used to assess the participants' degree of sleepiness. Microstate characteristics analysis was conducted on the final 24 subjects based on four standard microstate maps. Microstate C shows a significant increase in mean duration, coverage and occurrence, while microstate D has significantly higher occurrence after sleep deprivation. This study demonstrates notable changes in resting state EEG microstates following mild sleep deprivation. Present findings deepen our understanding of the brain's spatiotemporal dynamics under this condition and suggest the potential utility of neural markers in this domain as components of composite markers for sleep deprivation.


Assuntos
Encéfalo , Eletroencefalografia , Descanso , Privação do Sono , Humanos , Privação do Sono/fisiopatologia , Masculino , Adulto , Feminino , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Descanso/fisiologia , Adulto Jovem , Voluntários Saudáveis
8.
Hum Brain Mapp ; 45(10): e26778, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38980175

RESUMO

Brain activity continuously fluctuates over time, even if the brain is in controlled (e.g., experimentally induced) states. Recent years have seen an increasing interest in understanding the complexity of these temporal variations, for example with respect to developmental changes in brain function or between-person differences in healthy and clinical populations. However, the psychometric reliability of brain signal variability and complexity measures-which is an important precondition for robust individual differences as well as longitudinal research-is not yet sufficiently studied. We examined reliability (split-half correlations) and test-retest correlations for task-free (resting-state) BOLD fMRI as well as split-half correlations for seven functional task data sets from the Human Connectome Project to evaluate their reliability. We observed good to excellent split-half reliability for temporal variability measures derived from rest and task fMRI activation time series (standard deviation, mean absolute successive difference, mean squared successive difference), and moderate test-retest correlations for the same variability measures under rest conditions. Brain signal complexity estimates (several entropy and dimensionality measures) showed moderate to good reliabilities under both, rest and task activation conditions. We calculated the same measures also for time-resolved (dynamic) functional connectivity time series and observed moderate to good reliabilities for variability measures, but poor reliabilities for complexity measures derived from functional connectivity time series. Global (i.e., mean across cortical regions) measures tended to show higher reliability than region-specific variability or complexity estimates. Larger subcortical regions showed similar reliability as cortical regions, but small regions showed lower reliability, especially for complexity measures. Lastly, we also show that reliability scores are only minorly dependent on differences in scan length and replicate our results across different parcellation and denoising strategies. These results suggest that the variability and complexity of BOLD activation time series are robust measures well-suited for individual differences research. Temporal variability of global functional connectivity over time provides an important novel approach to robustly quantifying the dynamics of brain function. PRACTITIONER POINTS: Variability and complexity measures of BOLD activation show good split-half reliability and moderate test-retest reliability. Measures of variability of global functional connectivity over time can robustly quantify neural dynamics. Length of fMRI data has only a minor effect on reliability.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Conectoma/normas , Conectoma/métodos , Oxigênio/sangue , Masculino , Feminino , Descanso/fisiologia , Adulto , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas
9.
Brain Behav ; 14(7): e3600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988142

RESUMO

OBJECTIVE: In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS: We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS: The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION: This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.


Assuntos
Circulação Cerebrovascular , Diabetes Mellitus Tipo 2 , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Masculino , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Pessoa de Meia-Idade , Adulto , Descanso/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem
10.
Hum Brain Mapp ; 45(10): e26746, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989618

RESUMO

The human brain exhibits spatio-temporally complex activity even in the absence of external stimuli, cycling through recurring patterns of activity known as brain states. Thus far, brain state analysis has primarily been restricted to unimodal neuroimaging data sets, resulting in a limited definition of state and a poor understanding of the spatial and temporal relationships between states identified from different modalities. Here, we applied hidden Markov model (HMM) to concurrent electroencephalography-functional magnetic resonance imaging (EEG-fMRI) eyes open (EO) and eyes closed (EC) resting-state data, training models on the EEG and fMRI data separately, and evaluated the models' ability to distinguish dynamics between the two rest conditions. Additionally, we employed a general linear model approach to identify the BOLD correlates of the EEG-defined states to investigate whether the fMRI data could be used to improve the spatial definition of the EEG states. Finally, we performed a sliding window-based analysis on the state time courses to identify slower changes in the temporal dynamics, and then correlated these time courses across modalities. We found that both models could identify expected changes during EC rest compared to EO rest, with the fMRI model identifying changes in the activity and functional connectivity of visual and attention resting-state networks, while the EEG model correctly identified the canonical increase in alpha upon eye closure. In addition, by using the fMRI data, it was possible to infer the spatial properties of the EEG states, resulting in BOLD correlation maps resembling canonical alpha-BOLD correlations. Finally, the sliding window analysis revealed unique fractional occupancy dynamics for states from both models, with a selection of states showing strong temporal correlations across modalities. Overall, this study highlights the efficacy of using HMMs for brain state analysis, confirms that multimodal data can be used to provide more in-depth definitions of state and demonstrates that states defined across different modalities show similar temporal dynamics.


Assuntos
Encéfalo , Eletroencefalografia , Imageamento por Ressonância Magnética , Descanso , Humanos , Descanso/fisiologia , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto Jovem , Mapeamento Encefálico , Cadeias de Markov
11.
J Headache Pain ; 25(1): 114, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014299

RESUMO

BACKGROUND: Migraine has been associated with functional brain changes including altered connectivity and activity both during and between headache attacks. Recent studies established that the variability of the blood-oxygen-level-dependent (BOLD) signal is an important attribute of brain activity, which has so far been understudied in migraine. In this study, we investigate how time-varying measures of BOLD variability change interictally in episodic migraine patients. METHODS: Two independent resting state functional MRI datasets acquired on 3T (discovery cohort) and 1.5T MRI scanners (replication cohort) including 99 episodic migraine patients (n3T = 42, n1.5T=57) and 78 healthy controls (n3T = 46, n1.5T=32) were analyzed in this cross-sectional study. A framework using time-varying measures of BOLD variability was applied to derive BOLD variability states. Descriptors of BOLD variability states such as dwell time and fractional occupancy were calculated, then compared between migraine patients and healthy controls using Mann-Whitney U-tests. Spearman's rank correlation was calculated to test associations with clinical parameters. RESULTS: Resting-state activity was characterized by states of high and low BOLD signal variability. Migraine patients in the discovery cohort spent more time in the low variability state (mean dwell time: p = 0.014, median dwell time: p = 0.022, maximum dwell time: p = 0.013, fractional occupancy: p = 0.013) and less time in the high variability state (mean dwell time: p = 0.021, median dwell time: p = 0.021, maximum dwell time: p = 0.025, fractional occupancy: p = 0.013). Higher uptime of the low variability state was associated with greater disability as measured by MIDAS scores (maximum dwell time: R = 0.45, p = 0.007; fractional occupancy: R = 0.36, p = 0.035). Similar results were observed in the replication cohort. CONCLUSION: Episodic migraine patients spend more time in a state of low BOLD variability during rest in headache-free periods, which is associated with greater disability. BOLD variability states show potential as a replicable functional imaging marker in episodic migraine.


Assuntos
Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Descanso , Humanos , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/fisiopatologia , Feminino , Masculino , Adulto , Estudos Transversais , Descanso/fisiologia , Oxigênio/sangue , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estudos de Coortes , Adulto Jovem
12.
Vopr Pitan ; 93(3): 23-30, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39024168

RESUMO

The body composition monitoring using bioimpedance analysis (BIA) is important in assessing the functional state of athletes in sports. Based on changes of body composition, it is possible to optimize the actual dietary intake, as well as successfully organize the training process. The purpose of this research was to conduct a comparative assessment of BIA parameters and rest energy expenditure (REE) in highly trained cross-country skiers and young non-athletes. Material and methods. The members of the national cross-country skiing team from the Komi Republic and Russian Federation (n=30; age - 22.3±2.7 years) were examined. Practically healthy medical students served as a control group for the present study (n=40; age - 20.2±2.4 years). The participants successively passed the following study steps: assessment of the body composition by BIA (ACCUNIQ BC380), REE determination by indirect non-fasting calorimetry and calculation technique. Results. The parameters of total body water, fat-free mass, lean tissue and body cell mass were higher in contrast to the fat mass percentage in the athletes (р<0.001). The calculated REE was lower than measured REE among all the participants. At the same time, the REE calculated by the Ketch-McArdle formula significantly differed between the groups, while no differences were found between the REE calculated by the Harris-Benedict prediction equation. The measured REE were significantly higher by 16% (p<0.001) i n athletes compared to those in the control group. Conclusion. The body composition of athletes was distinguished by a significantly higher amounts of total body water, fat-free mass, skeletal muscle, active cell mass, and lower percentage of fat mass compared to healthy untrained individuals. The results obtained among athletes coincided with the idea that the magnitude of REE is determined by the mass of metabolically active tissues and to a lesser extent depends on the fat mass. BIA results can be used to monitor athletes' body composition during the training process.


Assuntos
Composição Corporal , Impedância Elétrica , Metabolismo Energético , Esqui , Humanos , Esqui/fisiologia , Masculino , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Adulto , Feminino , Atletas , Descanso/fisiologia
14.
Commun Biol ; 7(1): 875, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020002

RESUMO

Pain can be conceptualized as a precision signal for reinforcement learning in the brain and alterations in these processes are a hallmark of chronic pain conditions. Investigating individual differences in pain-related learning therefore holds important clinical and translational relevance. Here, we developed and externally validated a novel resting-state brain connectivity-based predictive model of pain-related learning. The pre-registered external validation indicates that the proposed model explains 8-12% of the inter-individual variance in pain-related learning. Model predictions are driven by connections of the amygdala, posterior insula, sensorimotor, frontoparietal, and cerebellar regions, outlining a network commonly described in aversive learning and pain. We propose the resulting model as a robust and highly accessible biomarker candidate for clinical and translational pain research, with promising implications for personalized treatment approaches and with a high potential to advance our understanding of the neural mechanisms of pain-related learning.


Assuntos
Encéfalo , Aprendizagem , Imageamento por Ressonância Magnética , Dor , Humanos , Masculino , Feminino , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Dor/fisiopatologia , Aprendizagem/fisiologia , Adulto Jovem , Descanso/fisiologia , Mapeamento Encefálico/métodos
15.
Hum Brain Mapp ; 45(10): e26780, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38984446

RESUMO

Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.


Assuntos
Dor Crônica , Imageamento por Ressonância Magnética , Descanso , Humanos , Masculino , Feminino , Dor Crônica/fisiopatologia , Dor Crônica/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Dor Musculoesquelética/fisiopatologia , Dor Musculoesquelética/diagnóstico por imagem , Resiliência Psicológica , Estudos Prospectivos , Biomarcadores , Estudos Longitudinais , Seguimentos
16.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38984703

RESUMO

The propensity to experience meaningful patterns in random arrangements and unrelated events shows considerable interindividual differences. Reduced inhibitory control (over sensory processes) and decreased working memory capacities are associated with this trait, which implies that the activation of frontal as well as posterior brain regions may be altered during rest and working memory tasks. In addition, people experiencing more meaningful coincidences showed reduced gray matter of the left inferior frontal gyrus (IFG), which is linked to the inhibition of irrelevant information in working memory and the control and integration of multisensory information. To study deviations in the functional connectivity of the IFG with posterior associative areas, the present study investigated the fMRI resting state in a large sample of n = 101 participants. We applied seed-to-voxel analysis and found that people who perceive more meaningful coincidences showed negative functional connectivity of the left IFG (i.e. pars triangularis) with areas of the left posterior associative cortex (e.g. superior parietal cortex). A data-driven multivoxel pattern analysis further indicated that functional connectivity of a cluster located in the right cerebellum with a cluster including parts of the left middle frontal gyrus, left precentral gyrus, and the left IFG (pars opercularis) was associated with meaningful coincidences. These findings add evidence to the neurocognitive foundations of the propensity to experience meaningful coincidences, which strengthens the idea that deviations of working memory functions and inhibition of sensory and motor information explain why people experience more meaning in meaningless noise.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Memória de Curto Prazo/fisiologia , Descanso/fisiologia , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem
17.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39010819

RESUMO

Learning how others perceive us helps us tune our behavior to form adaptive relationships. But which perceptions stick with us? And when in the learning process are they codified in memory? We leveraged a popular television series-The Office-to answer these questions. Prior to their functional magnetic resonance imaging (fMRI) session, viewers of The Office reported which characters they identified with, as well as which characters they perceived another person (i.e. counterpart) was similar to. During their fMRI scan, participants found out which characters other people thought they and the counterpart were like, and also completed rest scans. Participants remembered more feedback inconsistent with their self-views (vs. views of the counterpart). Although neural activity while encoding self-inconsistent feedback did not meaningfully predict memory, returning to the inconsistent self feedback during subsequent rest did. During rest, participants reinstated neural patterns engaged while receiving self-inconsistent feedback in the dorsomedial prefrontal cortex (DMPFC). DMPFC reinstatement also quadratically predicted self-inconsistent memory, with too few or too many reinstatements compromising memory performance. Processing social feedback during rest may impact how we remember and integrate the feedback, especially when it contradicts our self-views.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Memória/fisiologia , Descanso/fisiologia , Percepção Social , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico , Retroalimentação Psicológica/fisiologia , Adolescente , Autoimagem
18.
Sci Rep ; 14(1): 17034, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043776

RESUMO

Racism is an insidious problem with far-reaching effects on the lives of Black, Indigenous, and People of Color (BIPOC). The pervasive negative impact of racism on mental health is well documented. However, less is known about the potential downstream impacts of maternal experiences of racism on offspring neurodevelopment. This study sought to examine evidence for a biological pathway of intergenerational transmission of racism-related trauma. This study examined the effects of self-reported maternal experiences of racism on resting state functional connectivity (rsFC) in n = 25 neonates (13 female, 12 male) birthed by BIPOC mothers. Amygdala and hippocampus are brain regions involved in fear, memory, and anxiety, and are central nodes in brain networks associated with trauma-related change. We used average scores on the Experiences of Racism Scale as a continuous, voxel-wise regressor in seed-based, whole-brain connectivity analysis of anatomically defined amygdala and hippocampus seed regions of interest. All analyses controlled for infant sex and gestational age at the 2-week scanning session. More maternal racism-related experiences were associated with (1) stronger right amygdala rsFC with visual cortex and thalamus; and (2) stronger hippocampus rsFC with visual cortex and a temporo-parietal network, in neonates. The results of this research have implications for understanding how maternal experiences of racism may alter neurodevelopment, and for related social policy.


Assuntos
Tonsila do Cerebelo , Hipocampo , Imageamento por Ressonância Magnética , Racismo , Humanos , Feminino , Masculino , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Racismo/psicologia , Hipocampo/fisiologia , Recém-Nascido , Adulto , Descanso/fisiologia , Mães/psicologia , Vias Neurais/fisiologia
19.
Prog Brain Res ; 286: 33-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38876578

RESUMO

Verbal short-term and long-term memory are crucial neuropsychological functions involved in core cognitive abilities. They constitute vital components of subjective well-being and academic achievement. To date, there is limited research on the association between regular physical activity and memory abilities during young adulthood. The Individual Alpha Peak Frequency (IAPF) contributes to various cognitive abilities and also appears to be sensitive to physical activity. Consequently, the IAPF has the potential to underlie the association between physical activity and verbal memory. We examined the direct relation of physical activity and verbal memory, and the potential indirect relation via IAPF in young adults. Regular physical activity was assessed via accelerometry on seven consecutive days in 115 participants (N=115, 48% female) aged 18-35 years (M=24.1, SD=3.8). In addition, verbal memory performance was assessed using an immediate and delayed free-recall task. Brain activity during rest was recorded with EEG, and IAPF was extracted for mediation analyses. Path analysis revealed pronounced sex differences in the association between physical activity, IAPF, and verbal memory performance. Exclusively in female participants, higher vigorous physical activity levels were associated with better recall performance. In contrast, no association of physical activity and memory was found in male participants. However, being more physically active was related to a higher IAPF exclusively in male participants. Physical activity shows differential associations between IAPF and verbal memory in male and female participants. However, the lack of a mediating role of IAPF suggests that this neurophysiological marker cannot explain these specific associations in young adults.


Assuntos
Encéfalo , Exercício Físico , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Adolescente , Exercício Físico/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Acelerometria , Descanso/fisiologia , Aprendizagem Verbal/fisiologia , Memória/fisiologia , Caracteres Sexuais , Rememoração Mental/fisiologia , Ritmo alfa/fisiologia
20.
PLoS Comput Biol ; 20(6): e1012099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843298

RESUMO

Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.


Assuntos
Encéfalo , Conectoma , Modelos Neurológicos , Descanso , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Biologia Computacional , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Simulação por Computador , Acetilcolina/metabolismo , Masculino , Adulto , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA