Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.404
Filtrar
1.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967784

RESUMO

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Assuntos
Bactérias , Produtos Agrícolas , Estresse Salino , Microbiologia do Solo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Desenvolvimento Vegetal , Tolerância ao Sal , Reguladores de Crescimento de Plantas/metabolismo , Solo/química , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Salinidade
2.
Antonie Van Leeuwenhoek ; 117(1): 92, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949726

RESUMO

Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.


Assuntos
Nicotiana , Controle Biológico de Vetores , Doenças das Plantas , Pseudomonas syringae , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Pseudomonas syringae/fisiologia , Controle Biológico de Vetores/métodos , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Insetos/microbiologia , Tisanópteros/microbiologia , Resistência à Doença , Desenvolvimento Vegetal , Agentes de Controle Biológico , Hemípteros/microbiologia
3.
Glob Chang Biol ; 30(7): e17406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982862

RESUMO

Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.


Assuntos
Aquecimento Global , Ecossistema , Desenvolvimento Vegetal , Temperatura , Estações do Ano , Temperatura Alta , Modelos Climáticos , Plantas , Mudança Climática
4.
Methods Mol Biol ; 2827: 35-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985261

RESUMO

Temporary immersion systems (TIS) have been widely recognized as a promising technology for micropropagation of various plant species. The TIS provides a suitable environment for culture and allows intermittent contact of the explant with the culture medium at different immersion frequencies and aeration of the culture in each cycle. The frequency or immersion is one of the most critical parameters for the efficiency of these systems. The design, media volume, and container capacity substantially improve cultivation efficiency. Different TIS have been developed and successfully applied to micropropagation in various in vitro systems, such as sprout proliferation, microcuttings, and somatic embryos. TIS increases multiplication and conversion rates to plants and a better response during the ex vitro acclimatization phase. This article covers the use of different immersion systems and their applications in plant biotechnology, particularly in plant tissue culture, as well as its use in the massive propagation of plants of agroeconomic interest.


Assuntos
Aclimatação , Desenvolvimento Vegetal , Meios de Cultura/química , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/instrumentação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas , Imersão , Técnicas de Embriogênese Somática de Plantas/métodos
5.
Methods Mol Biol ; 2827: 109-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985266

RESUMO

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Assuntos
Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
6.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001942

RESUMO

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Assuntos
Carotenoides , Regulação da Expressão Gênica de Plantas , Plastídeos , Plastídeos/metabolismo , Carotenoides/metabolismo , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/genética , Diferenciação Celular
7.
Methods Mol Biol ; 2827: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985259

RESUMO

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Células/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
8.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013920

RESUMO

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , Biomassa
9.
J Exp Bot ; 75(14): 4167-4170, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039837

RESUMO

Plants face the most diverse climatic conditions throughout their life cycle. As sessile organisms, they are remarkably resilient to adverse environments, which have been exacerbated in the current context of global change. The way in which plants sense and respond to various types of abiotic stresses varies depending on the severity of the stress and the developmental stage of the plant, affecting both vegetative and reproductive aspects. Understanding how plants respond and adapt to a changing environment is crucial for predicting and mitigating the impacts of climate change on ecosystems and ensuring the future survival and reproduction of plant species.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Adaptação Fisiológica , Ecossistema , Meio Ambiente , Desenvolvimento Vegetal/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Reprodução , Estresse Fisiológico
10.
Environ Sci Pollut Res Int ; 31(33): 46002-46022, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980484

RESUMO

Mining-related lead (Pb) pollution of the soil poses serious hazards to ecosystems and living organisms, including humans. Improved heavy metal phytoremediation efficacy, achieved by using phytostabilizing plants assisted by plant-growth-promoting (PGP) microorganisms, has been presented as an effective strategy for remediating polluted soils. The objective of this research was to examine the response and potential of the plant-growth-promoting bacterium LMR356, a Rhodococcus qingshengii strain isolated from an abandoned mining soil, under lead stress conditions. Compared to non-contaminated culture media, the presence of lead induced a significant decrease in auxin production (from 21.17 to 2.65 µg mL-1) and phosphate solubilization (from 33.60 to 8.22 mg L-1), whereas other PGP traits increased drastically, such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity (from 38.17 to 71.37 nmol mg-1 h-1 α-ketobutyrate), siderophore production (from 69 to 83%), exopolysaccharide production (from 1952.28 to 3637.72 mg mL-1), biofilm formation, and motility. We, therefore, investigated the behavior of Sulla spinosissima L. in the presence or absence of this strain under a variety of experimental conditions. Under hydroponic conditions, Sulla plants showed endurance to varying lead concentrations (500-1000 µM). Inoculation of plants with Rhodococcus qingshengii strain LMR356 enhanced plant tolerance, as demonstrated by the increase in plant biomass (ranging from 14.41 to 79.12%) compared to non-inoculated Pb-stressed and non-stressed control plants. Antioxidant enzyme activities (increasing by -42.71 to 126.8%) and chlorophyll (383.33%) and carotenoid (613.04%) content were also augmented. In addition to its impact on plant lead tolerance, strain LMR356 showed a growth-promoting effect on Sulla plants when cultivated in sterilized non-contaminated sand. Parameters such as plant biomass (16.57%), chlorophyll (24.14%), and carotenoid (30%) contents, as well as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, were all elevated compared to non-inoculated plants. Furthermore, when the same plant species was cultivated in highly polluted soil, inoculation increased plant biomass and improved its physiological properties. These findings demonstrate that LMR356 is a phytobeneficial bacterial strain capable of enhancing Sulla growth under normal conditions and improving its heavy metal tolerance in multi-polluted soils. Thus, it can be considered a promising biofertilizer candidate for growing Sulla spinosissima L. or other selected plants intended for application in restoration and stabilization initiatives aimed at reviving and safeguarding environmentally compromised and polluted soils after mining activities.


Assuntos
Biodegradação Ambiental , Chumbo , Rhodococcus , Poluentes do Solo , Rhodococcus/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal/efeitos dos fármacos
11.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999944

RESUMO

Bri1-EMS Suppressor 1 (BES1) and Brassinazole Resistant 1 (BZR1) are two key transcription factors in the brassinosteroid (BR) signaling pathway, serving as crucial integrators that connect various signaling pathways in plants. Extensive genetic and biochemical studies have revealed that BES1 and BZR1, along with other protein factors, form a complex interaction network that governs plant growth, development, and stress tolerance. Among the interactome of BES1 and BZR1, several proteins involved in posttranslational modifications play a key role in modifying the stability, abundance, and transcriptional activity of BES1 and BZR1. This review specifically focuses on the functions and regulatory mechanisms of BES1 and BZR1 protein interactors that are not involved in the posttranslational modifications but are crucial in specific growth and development stages and stress responses. By highlighting the significance of the BZR1 and BES1 interactome, this review sheds light on how it optimizes plant growth, development, and stress responses.


Assuntos
Proteínas de Arabidopsis , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares , Desenvolvimento Vegetal , Estresse Fisiológico , Desenvolvimento Vegetal/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Ligação Proteica
12.
Sci Rep ; 14(1): 15934, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987320

RESUMO

The draft genome sequence of an agriculturally important actinobacterial species Amycolatopsis sp. BCA-696 was developed and characterized in this study. Amycolatopsis BCA-696 is known for its biocontrol properties against charcoal rot and also for plant growth-promotion (PGP) in several crop species. The next-generation sequencing (NGS)-based draft genome of Amycolatopsis sp. BCA-696 comprised of ~ 9.05 Mb linear chromosome with 68.75% GC content. In total, 8716 protein-coding sequences and 61 RNA-coding sequences were predicted in the genome. This newly developed genome sequence has been also characterized for biosynthetic gene clusters (BGCs) and biosynthetic pathways. Furthermore, we have also reported that the Amycolatopsis sp. BCA-696 produces the glycopeptide antibiotic vancomycin that inhibits the growth of pathogenic gram-positive bacteria. A comparative analysis of the BCA-696 genome with publicly available closely related genomes of 14 strains of Amycolatopsis has also been conducted. The comparative analysis has identified a total of 4733 core and 466 unique orthologous genes present in the BCA-696 genome The unique genes present in BCA-696 was enriched with antibiotic biosynthesis and resistance functions. Genome assembly of the BCA-696 has also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, chitinase, and cellulase production.


Assuntos
Amycolatopsis , Genoma Bacteriano , Genômica , Genômica/métodos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Família Multigênica , Desenvolvimento Vegetal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Vancomicina/farmacologia
13.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982145

RESUMO

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Assuntos
Capsicum , Filogenia , Rizosfera , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/classificação , RNA Ribossômico 16S/genética , Genoma Bacteriano , Desenvolvimento Vegetal
14.
Sci Rep ; 14(1): 15546, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969785

RESUMO

Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.


Assuntos
Biofilmes , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Desenvolvimento Vegetal , Biomassa
15.
BMC Genomics ; 25(1): 672, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969999

RESUMO

The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.


Assuntos
Avicennia , Avicennia/microbiologia , Genoma Bacteriano , Genômica , Rizosfera , Salinidade , Filogenia , Desenvolvimento Vegetal , Sideróforos/metabolismo
16.
Microbiol Res ; 286: 127823, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959523

RESUMO

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Tolerância ao Sal , Streptomyces , Compostos Orgânicos Voláteis , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Streptomyces/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Salino , Transdução de Sinais , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Carbono-Carbono Liases/metabolismo , Fosfatos/metabolismo
17.
Microb Pathog ; 193: 106772, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969183

RESUMO

Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.


Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Plantas , Estresse Fisiológico , Micorrizas/fisiologia , Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Salinidade , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Rizosfera , Estresse Salino
18.
Microbiol Res ; 286: 127780, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970905

RESUMO

In recent years, research into the complex interactions and crosstalk between plants and their associated microbiota, collectively known as the plant microbiome has revealed the pivotal role of microbial communities for promoting plant growth and health. Plants have evolved intricate relationships with a diverse array of microorganisms inhabiting their roots, leaves, and other plant tissues. This microbiota mainly includes bacteria, archaea, fungi, protozoans, and viruses, forming a dynamic and interconnected network within and around the plant. Through mutualistic or cooperative interactions, these microbes contribute to various aspects of plant health and development. The direct mechanisms of the plant microbiome include the enhancement of plant growth and development through nutrient acquisition. Microbes have the ability to solubilize essential minerals, fix atmospheric nitrogen, and convert organic matter into accessible forms, thereby augmenting the nutrient pool available to the plant. Additionally, the microbiome helps plants to withstand biotic and abiotic stresses, such as pathogen attacks and adverse environmental conditions, by priming the plant's immune responses, antagonizing phytopathogens, and improving stress tolerance. Furthermore, the plant microbiome plays a vital role in phytohormone regulation, facilitating hormonal balance within the plant. This regulation influences various growth processes, including root development, flowering, and fruiting. Microbial communities can also produce secondary metabolites, which directly or indirectly promote plant growth, development, and health. Understanding the functional potential of the plant microbiome has led to innovative agricultural practices, such as microbiome-based biofertilizers and biopesticides, which harness the power of beneficial microorganisms to enhance crop yields while reducing the dependency on chemical inputs. In the present review, we discuss and highlight research gaps regarding the plant microbiome and how the plant microbiome can be used as a source of single and synthetic bioinoculants for plant growth and health.


Assuntos
Agricultura , Bactérias , Microbiota , Desenvolvimento Vegetal , Plantas , Microbiota/fisiologia , Plantas/microbiologia , Agricultura/métodos , Bactérias/metabolismo , Bactérias/classificação , Raízes de Plantas/microbiologia , Simbiose , Fungos/metabolismo , Fungos/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Microbiologia do Solo
19.
Microbiol Res ; 286: 127827, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002396

RESUMO

Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.


Assuntos
Agricultura , Produtos Agrícolas , Secas , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/genética , Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Carbono-Carbono Liases/genética
20.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023775

RESUMO

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Assuntos
Plantas , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA