Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Biol Macromol ; 270(Pt 1): 132294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735602

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.


Assuntos
Biodegradação Ambiental , Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Dioxigenases/metabolismo , Dioxigenases/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas putida/enzimologia , Catecóis/metabolismo , Catecóis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
2.
Clin Transl Oncol ; 26(9): 2156-2165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38598002

RESUMO

Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Epigênese Genética , Neoplasias , Proteínas Proto-Oncogênicas , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
3.
Plant Sci ; 336: 111817, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562731

RESUMO

Carotenoid cleavage dioxygenase (CCD) gene family is organized in two subfamilies: (i) 9-cis epoxycarotenoid dioxygenase (NCED) genes and (ii) CCD genes. NCED genes are essential for catalyzing the first step of the abscisic-acid (ABA) biosynthesis, while CCD genes produce precursors of the strigolactones hormone. The functional characterization of these gene subfamilies has not been yet performed in chickpea and lentil. Herein, were identified and systematically characterized two NCED and five CCD genes in the chickpea and two NCED and six CCD genes in lentil. After in silico sequence analysis and phylogeny, the expression profile of the NCED/CCD genes was determined by meta-analysis and real-time PCR in plants under different stress conditions. Sequence data revealed that NCED/CCD genes are highly conserved between chickpea and lentil. This conservation was observed both at gene and protein sequence levels and phylogenetic relationships. Analysis of the promoter sequences revealed that all NCED/CCD genes have a considerable number of cis-regulatory elements responsive to biotic and abiotic stress. Protein sequence analysis evidenced that NCED/CCD genes share several conserved motifs and that they have a highly interconnected interaction network. Furthermore, the three-dimensional structure of these proteins was determined and indicated that some proteins have structures with considerable similarity. The meta-analysis revealed that NCED/CCD genes are dynamically modulated in different organs and under different stress conditions, but they have a positive correlation with plant tolerance. In accordance, real-time PCR data showed that both NCED and CCD genes are differentially modulated in plants under drought stress. In particular, CaNCED2, CaCCD5, LcNCED2, LcCCD1, and LcCCD2 genes have a positive correlation with improved plant tolerance to drought stress. Therefore, this study presented a detailed characterization of the chickpea and lentil NCED/CCD genes and provided new insights to improve abiotic stress tolerance in these two important crops.


Assuntos
Cicer , Dioxigenases , Lens (Planta) , Cicer/genética , Lens (Planta)/genética , Lens (Planta)/metabolismo , Filogenia , Dioxigenases/genética , Dioxigenases/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
4.
Chemosphere ; 336: 139284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348613

RESUMO

Selenastrum capricornutum efficiently degrades benzo(a)pyrene (BaP) but few proteins related to BaP degradation have been identified in this microalgae. So far, it has only been suggested that it could degrade BaP via the monooxygenase and/or dioxygenase pathways. To know more about this fact, in this work, cultures of S. capricornutum incubated with BaP were used to obtain the molecular weights (MWs) of proteins existing in its extra- and cellular extracts by electrophoresis and UPLC-ESI(+)-TOF MS analysis. The results of this proteomic approach indicated that BaP markedly induces the MWs: 6-20, 30, 45, and 65 kDa in cells; 6-20, 30.3, 38-45, and 55 kDa in liquid medium. So, these proteins could be related to BaP biodegradation. An identified protein with monooxygenase activity and rubredoxins (Rds) show to be related to BaP degradation: Rds could participate, together with the monooxygenase in the electron transfer during the formation of monohydroxylated-BaP metabolites. Rds may be also associated with a dioxygenase system that degrades BaP to form dihydrodiol-BaP metabolites. A multi-pass membrane protein was identified too, and it can regulate the transport of molecules like enzymes from inside the cell to the outside environment. At the same time, the presence of a dihydrolipoamide acetyltransferase validated the stress caused by the exposure to BaP. It is noteworthy that these findings provide valuable and original information on the characterization of the proteins of S. capricornutum cultures degrading BaP, whose enzymes have so far not been known. It is important to highlight that the functions of the identified proteins can help in understanding the metabolic and environmental behavior of this microalgae, and the extracts containing the degrading enzymes could be utilized in bioremediation applications.


Assuntos
Clorofíceas , Clorófitas , Dioxigenases , Clorófitas/metabolismo , Benzo(a)pireno/metabolismo , Proteômica , Clorofíceas/metabolismo , Oxigenases de Função Mista/metabolismo , Dioxigenases/metabolismo , Espectrometria de Massas
5.
J Biotechnol ; 366: 19-24, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870480

RESUMO

Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.


Assuntos
Dioxigenases , Desidrogenase do Álcool de Açúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Dioxigenases/metabolismo , Oxirredução , Glicerol/metabolismo
6.
Adv Exp Med Biol ; 1411: 163-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949310

RESUMO

Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.


Assuntos
Transtorno Depressivo Maior , Dioxigenases , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Qualidade de Vida , Inflamação/metabolismo
7.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431912

RESUMO

Carotenoids are isoprenoid pigments, and sources of vitamin A in humans. The first metabolic pathway for their synthesis is mediated by the enzymes ß,ß-carotene-15,15'-dioxygenase (BCO1) and ß,ß-carotene-9',10'-dioxygenase (BCO2), which cleave carotenoids into smaller compounds, called apocarotenoids. The objective of this study is to gain insight into the interaction of BCO1 and BCO2 with carotenoids, adding structural diversity and importance in the agro-food and/or health sectors. Homology modeling of BCO1 and BCO2, and the molecular dynamics of complexes with all carotenoids were performed. Interaction energy and structures were analyzed. For both enzymes, the general structure is conserved with a seven beta-sheet structure, and the ß-carotene is positioned at an optimal distance from the catalytic center. Fe2+ forms in an octahedral coordination sphere with four perfectly conserved histidine residues. BCO1 finds stability in a structure in which the ß-carotene is positioned ready for enzymatic catalysis at the 15-15' bond, and BCO2 in positioning the bond to be cleaved (C9-C10) close to the active site. In BCO1 the carotenoids interact with only seven residues with aromatic rings, while the interaction of BCO2 is much more varied in terms of the type of interaction, with more residues of different chemical natures.


Assuntos
Dioxigenases , beta-Caroteno 15,15'-Mono-Oxigenase , Humanos , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , beta Caroteno/metabolismo , Simulação por Computador , Dioxigenases/metabolismo , Carotenoides/metabolismo
8.
Pestic Biochem Physiol ; 187: 105197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127069

RESUMO

Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids ß-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol  degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.


Assuntos
Dioxigenases , Metil Paration , Praguicidas , Aminoácidos , Burkholderiaceae , Carboidratos , Carbono , Ecossistema , Ácidos Graxos , Hidroquinonas/análise , Metil Paration/análise , Metil Paration/química , Metil Paration/toxicidade , Nitrofenóis , Compostos Organofosforados , Proteômica , Espécies Reativas de Oxigênio , Solo
9.
Appl Microbiol Biotechnol ; 106(17): 5551-5562, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906439

RESUMO

Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a "molecular shield," preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress. KEY POINTS: • This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential. • AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement. • The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments. AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.


Assuntos
Proteínas de Bactérias , Dioxigenases , Desenvolvimento Embrionário , Peroxidases , Proteínas de Plantas , Água
10.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948418

RESUMO

Coloring is one of the most important characteristics in commercial flowers and fruits, generally due to the accumulation of carotenoid pigments. Enzymes of the CCD4 family in citrus intervene in the generation of ß-citraurin, an apocarotenoid responsible for the reddish-orange color of mandarins. Citrus CCD4s enzymes could be capable of interacting with the thylakoid membrane inside chloroplasts. However, to date, this interaction has not been studied in detail. In this work, we present three new complete models of the CCD4 family members (CCD4a, CCD4b, and CCD4c), modeled with a lipid membrane. To identify the preference for substrates, typical carotenoids were inserted in the active site of the receptors and the protein-ligand interaction energy was evaluated. The results show a clear preference of CCD4s for xanthophylls over aliphatic carotenes. Our findings indicate the ability to penetrate the membrane and maintain a stable interaction through the N-terminal α-helical domain, spanning a contact surface of 2250 to 3250 Å2. The orientation and depth of penetration at the membrane surface suggest that CCD4s have the ability to extract carotenoids directly from the membrane through a tunnel consisting mainly of hydrophobic residues that extends up to the catalytic center of the enzyme.


Assuntos
Carotenoides/metabolismo , Citrus/metabolismo , Dioxigenases/metabolismo , Proteínas de Plantas/metabolismo , Carotenoides/química , Citrus/química , Dioxigenases/química , Modelos Moleculares , Proteínas de Plantas/química , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Xantofilas/química , Xantofilas/metabolismo
11.
Curr Biol ; 31(24): 5597-5604.e7, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34687609

RESUMO

Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.


Assuntos
Bico , Dioxigenases/genética , Tentilhões , Proteínas de Peixes/genética , Animais , Equador , Tentilhões/genética , Genótipo , Polimorfismo Genético
12.
Clin Transl Oncol ; 23(9): 1731-1742, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33861431

RESUMO

Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy that overlaps with myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) and tends to transform into acute myeloid leukemia (AML). Among cases of CMML, > 90% have gene mutations, primarily involving TET2 (~ 60%), ASXL1 (~ 40%), SRSF2 (~ 50%), and the RAS pathways (~ 30%). These gene mutations are associated with both the clinical phenotypes and the prognosis of CMML, special CMML variants and pre-phases of CMML. Cytogenetic abnormalities and the size of genome are also associated with prognosis. Meanwhile, cases with ASXL1, DNMT3A, NRAS, SETBP1, CBL and RUNX1 mutations may have inferior prognoses, but only ASXL1 mutations were confirmed to be independent predictors of the patient outcome and were included in three prognostic models. Novel treatment targets related to the various gene mutations are emerging. Therefore, this review provides new insights to explore the correlations among gene mutations, clinical phenotypes, prognosis, and novel drugs in CMML.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , Mutação , Proteínas de Transporte/genética , Aberrações Cromossômicas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Metilação de DNA , DNA Metiltransferase 3A/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Epigênese Genética , Repressão Epigenética , GTP Fosfo-Hidrolases/genética , Genes ras , Tamanho do Genoma , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Crônica/mortalidade , Proteínas de Membrana/genética , Síndromes Mielodisplásicas/genética , Proteínas Nucleares/genética , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Transdução de Sinais/genética
13.
Protein Expr Purif ; 183: 105862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33716123

RESUMO

XanA is an FeII- and α-ketoglutarate-dependent enzyme responsible for the conversion of xanthine to uric acid. It is unique to fungi and it was first described in Aspergillus nidulans. In this work, we present the preliminary characterization of the XanA enzyme from Aspergillus oryzae, a relevant fungus in food production in Japan. The XanA protein (GenBank BAE56701.1) was expressed as a recombinant protein in Escherichia coli BL21 (DE3) Arctic cells. Initial purification assays showed low protein solubility; therefore, the buffer composition was optimized using a fluorescence-based thermal shift assay. The protein was stabilized in solution in the presence of either 600 µM xanthine, 1 M NaCl, 600 µM α-ketoglutarate or 20% glycerol, which increases the melting temperature (Tm) by 2, 4, 5 and 6 °C respectively. The XanA protein was purified by following a three-step purification protocol. The nickel affinity purified protein was subjected to ion-exchange chromatography once the N-terminal 6XHis-tag had been successfully removed, followed by size-exclusion purification. Dynamic light scattering experiments showed that the purified protein was monodisperse and behaved as a monomer in solution. Preliminary activity assays in the presence of xanthine, α-ketoglutarate, and iron suggest that the enzyme is an iron- and α-ketoglutarate-dependent xanthine dioxygenase. Furthermore, the enzyme's optimum activity conditions were determined to be 25 °C, pH of 7.2, HEPES buffer, and 1% of glycerol. In conclusion, we established the conditions to purify the XanA enzyme from A. oryzae in its active form from E. coli bacteria and determined the optimal activity conditions.


Assuntos
Aspergillus oryzae , Dioxigenases , Proteínas Fúngicas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Dioxigenases/biossíntese , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ferro/química , Ferro/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
14.
Environ Microbiol ; 23(5): 2522-2531, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734558

RESUMO

The dnt pathway of Burkholderia sp. R34 is in the midst of an evolutionary journey from its ancestral, natural substrate (naphthalene) towards a new xenobiotic one [2,4-dinitrotoluene (DNT)]. The gene cluster encoding the leading multicomponent ring dioxygenase (DntA) has activity on the old and the new substrate, but it is induced by neither. Instead, the transcriptional factor encoded by the adjacent gene (dntR) activates expression of the dnt cluster upon addition of salicylate, one degradation intermediate of the ancestral naphthalene route but not any longer a substrate/product of the evolved DntA enzyme. Fluorescence of cells bearing dntA-gfp fusions revealed that induction of the dnt genes by salicylate was enhanced upon exposure to bona fide DntA substrates, i.e., naphthalene or DNT. Such amplification was dependent on effective dioxygenation of these pathway-specific head compounds, which thereby fostered expression of the cognate catabolic operon. The phenomenon seems to happen not through direct binding to a cognate transcriptional factor but through the interplay of a non-specific regulator with a substrate-specific enzyme. This regulatory scenario may ease transition of complete catabolic operons (i.e. enzymes plus regulatory devices) from one substrate to another without loss of fitness during the evolutionary roadmap between two optimal specificities.


Assuntos
Biodegradação Ambiental , Burkholderia , Dioxigenases , Animais , Burkholderia/genética , Dinitrobenzenos
15.
Braz J Med Biol Res ; 53(12): e9740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146288

RESUMO

Breast cancer (BC) is a commonly diagnosed cancer in females. MicroRNA-660-5p (miR-660-5p) has been reported to be involved in the occurrence and development of BC. However, the regulatory network of miR-660-5p in BC has not been fully addressed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the enrichment of miR-660-5p and tet-eleven translocation 2 (TET2) in BC tissues and cells. Cell counting kit-8 (CCK8), flow cytometry, and transwell migration and invasion assays were used to measure cell proliferation, apoptosis, migration, and invasion. The target relationship between miR-660-5p and TET2 was confirmed by dual luciferase reporter assay. Protein expression was measured by western blot. The expression of miR-660-5p was elevated in BC, and high expression of miR-660-5p was closely related to lymph node metastasis, advanced TNM stage, and vascular invasion of BC tumors. miR-660-5p silencing inhibited cell proliferation and metastasis, but induced apoptosis of BC cells. TET2 was identified as a direct target of miR-660-5p, and the interference of TET2 partly reversed the suppressive effects of miR-660-5p silencing on the malignant potential of BC cells. miR-660-5p promoted BC progression partly through modulating TET2 and PI3K/AKT/mTOR signaling. miR-660-5p/TET2 axis might be a promising target for BC treatment.


Assuntos
Neoplasias da Mama , MicroRNAs/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Dioxigenases , Feminino , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
16.
BMC Genomics ; 21(1): 301, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293261

RESUMO

BACKGROUND: Animal coloration is usually an adaptive attribute, under strong local selection pressures and often diversified among species or populations. The strawberry poison frog (Oophaga pumilio) shows an impressive array of color morphs across its distribution in Central America. Here we quantify gene expression and genetic variation to identify candidate genes involved in generating divergence in coloration between populations of red, green and blue O. pumilio from the Bocas del Toro archipelago in Panama. RESULTS: We generated a high quality non-redundant reference transcriptome by mapping the products of genome-guided and de novo transcriptome assemblies onto a re-scaffolded draft genome of O. pumilio. We then measured gene expression in individuals of the three color phenotypes and identified color-associated candidate genes by comparing differential expression results against a list of a priori gene sets for five different functional categories of coloration - pteridine synthesis, carotenoid synthesis, melanin synthesis, iridophore pathways (structural coloration), and chromatophore development. We found 68 candidate coloration loci with significant expression differences among the color phenotypes. Notable upregulated examples include pteridine synthesis genes spr, xdh and pts (in red and green frogs); carotenoid metabolism genes bco2 (in blue frogs), scarb1 (in red frogs), and guanine metabolism gene psat1 (in blue frogs). We detected significantly higher expression of the pteridine synthesis gene set in red and green frogs versus blue frogs. In addition to gene expression differences, we identified 370 outlier SNPs on 162 annotated genes showing signatures of diversifying selection, including eight pigmentation-associated genes. CONCLUSIONS: Gene expression in the skin of the three populations of frogs with differing coloration is highly divergent. The strong signal of differential expression in pteridine genes is consistent with a major role of these genes in generating the coloration differences among the three morphs. However, the finding of differentially expressed genes across pathways and functional categories suggests that multiple mechanisms are responsible for the coloration differences, likely involving both pigmentary and structural coloration. In addition to regulatory differences, we found potential evidence of differential selection acting at the protein sequence level in several color-associated loci, which could contribute to the color polymorphism.


Assuntos
Anuros/genética , Regulação da Expressão Gênica/genética , Pigmentação/genética , Transcriptoma/genética , Animais , Anuros/metabolismo , Carotenoides/metabolismo , Cromatóforos/metabolismo , Cor , Dioxigenases/genética , Dioxigenases/metabolismo , Genoma , Genômica , Genótipo , Guanina/metabolismo , Melaninas/metabolismo , Panamá , Fenótipo , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Pteridinas/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transaminases/genética , Transaminases/metabolismo
17.
Chembiochem ; 21(14): 1981-1987, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32189465

RESUMO

Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Iminas/metabolismo , Metaloproteínas/metabolismo , Aminação , Biocatálise , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/isolamento & purificação , Iminas/química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
18.
Appl Microbiol Biotechnol ; 104(7): 2987-2997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060694

RESUMO

Metarhizium species are the most abundant fungi that can be isolated from soil, with a well-known biopesticide capacity. Metarhizium recognizes their hosts when the conidium interacts with insects, where the fungi are in contact with the hydrocarbons of the outermost lipid layer cuticle. These cuticular hydrocarbons comprise a mixture of n-alkanes, n-alkenes, and methyl-branched chains. Metarhizium can degrade insect hydrocarbons and use these hydrocarbons for energy production and the biosynthesis of cellular components. The metabolism of nitroalkanes involves nitronate monooxygenase activity. In this work, we isolated a family of six genes with potential nitronate monooxygenase activity from Metarhizium brunneum. The six genes were expressed in Escherichia coli, and the nitronate monooxygenase activity was verified in the recombinant proteins. Additionally, when the conidia of M. brunneum were grown in medium with nitroalkanes, virulence against Plutella xylostella increased. Furthermore, we analyzed the expression of the six Npd genes during the infection to this insect, which showed differential expression of the six Npd genes during infection.


Assuntos
Agentes de Controle Biológico/metabolismo , Dioxigenases/metabolismo , Metarhizium/enzimologia , Mariposas/microbiologia , Alcanos/metabolismo , Animais , DNA Fúngico/genética , Dioxigenases/genética , Hidrocarbonetos/metabolismo , Proteínas de Insetos/metabolismo , Metarhizium/genética , Metarhizium/patogenicidade , Controle Biológico de Vetores , Virulência/genética
19.
DNA Cell Biol ; 39(1): 37-49, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31750745

RESUMO

Cloning using somatic cell nuclear transfer (SCNT) has many potential applications such as in transgenic and genomic-edited animal production. Abnormal epigenetic reprogramming of somatic cell nuclei is probably the major cause of the low efficiency associated with SCNT. Strategies to alter DNA reprogramming in donor cell nuclei may help improve the cloning efficiency. In the present study, we aimed to characterize the effects of procaine and S-adenosyl-l-homocysteine (SAH) as demethylating agents during the cell culture of bovine skin fibroblasts. We characterized the effects of procaine and SAH on the expression of genes related to the epigenetic machinery, including the DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 3 beta (DNMT3B), TET1, TET2, TET3, and OCT4 genes, and on DNA methylation levels of bovine skin fibroblasts. We found that DNA methylation levels of satellite I were reduced by SAH (p = 0.0495) and by the combination of SAH and procaine (p = 0.0479) compared with that in the control group. Global DNA methylation levels were lower in cells that were cultivated with both compounds than in control cells (procaine [p = 0.0116], SAH [p = 0.0408], and both [p = 0.0163]). Regarding gene expression, there was a decrease in the DNMT1 transcript levels in cells cultivated with SAH (p = 0.0151) and SAH/procaine (0.0001); a decrease in the DNMT3A transcript levels in cells cultivated with SAH/procaine (p = 0.016); and finally, a decrease in the DNMT3B transcript levels in cells cultivated with procaine (p = 0.0007), SAH (p = 0.0060), and SAH/procaine (p = 0.0021) was found. Higher levels of TET3 transcripts in cells cultivated with procaine (p = 0.0291), SAH (p = 0.0373), and procaine/SAH (p = 0.0013) compared with the control were also found. Regarding the OCT4 gene, no differences were found. Our results showed that the use of procaine and SAH during bovine cell culture was able to alter the epigenetic profile of the cells. This approach may be a useful alternative strategy to improve the efficiency of reprogramming the somatic nuclei after fusion, which in turn will improve the SCNT efficiency.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Procaína/farmacologia , S-Adenosil-Homocisteína/farmacologia , Animais , Bovinos , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Dioxigenases/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas/genética , Pele/citologia
20.
J Cell Physiol ; 235(6): 5256-5269, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858593

RESUMO

Modifications on shear stress-based mechanical forces are associated with pathophysiological susceptibility and their effect on endothelial cells (EC) needs to be better addressed looking for comprehending the cellular and molecular mechanisms. This prompted us to better evaluate the effects of shear stress in human primary venous EC obtained from the umbilical cord, using an in vitro model to mimic the laminar blood flow, reaching an intensity 1-4 Pa. First, our data shows there is a significant up-expression of phosphatidylinositol 3-kinase (PI3K) in shear-stressed cells culminating downstream with an up-phosphorylation of AKT and up-expression of MAPK-ERK, concomitant to a dynamic cytoskeleton rearrangement upon integrin subunits (α4 and ß 3) requirements. Importantly, the results show there is significant involvement of nitric oxide synthase (eNOS), nNOS, and vascular endothelial growth factors receptor 2 (VEGFR2) in shear-stressed EC, while cell cycle-related events seem to being changed. Additionally, although diminution of 5-hydroxymethylcytosine in shear-stressed EC, suggesting a global repression of genes transcription, the promoters of PI3K and eNOS genes were significantly hydroxymethylated corroborating with their respective transcriptional profiles. Finally, to better address, the pivotal role of PI3K in shear-stressed EC we have revisited these biological issues by wortmannin targeting PI3K signaling and the data shows a dependency of PI3K signaling in controlling the expression of VGFR1, VGFR2, VEGF, and eNOS, once these genes were significantly suppressed in the presence of the inhibitor, as well as transcripts from Ki67 and CDK2 genes. Finally, our data still shows a coupling between PI3K and the epigenetic landscape of shear-stressed cells, once wortmannin promotes a significant suppression of ten-11 translocation 1 (TET1), TET2, and TET3 genes, evidencing that PI3K signaling is a necessary upstream pathway to modulate TET-related genes. In this study we determined the major mechanotransduction pathway by which blood flow driven shear stress activates PI3K which plays a pivotal role on guaranteeing endothelial cell phenotype and vascular homeostasis, opening novel perspectives to understand the molecular basis of pathophysiological disorders related with the vascular system.


Assuntos
Mecanotransdução Celular/genética , Óxido Nítrico Sintase/genética , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Wortmanina/farmacologia , Indutores da Angiogênese/farmacologia , Proteínas de Ligação a DNA , Dioxigenases , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Oxigenases de Função Mista , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/genética , Resistência ao Cisalhamento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA