Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38486346

RESUMO

Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.


Assuntos
Eichhornia , Eichhornia/genética , Genômica , Resistência à Doença , Europa (Continente) , Exercício Físico
2.
Bioresour Technol ; 398: 130516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432543

RESUMO

In this study, the exopolysaccharide from cyanobacteria was used for detoxification of acid hydrolysate of water hyacinth biomass. Exopolysaccharide-hydrogel showed phenolics and furans removal of 86 % and 97 %, respectively, with sugar recovery of 98.3 %. The fermentation of detoxified acid hydrolysate was integrated with that of pretreated biomass subjected to enzymatic saccharification derived from commercial cellulose (ESF) or from microbe (MSF). The maximum hydrogen production of 69.2 mL/g-VS was obtained in MSF, which is 1.2- and 1.6-fold higher than ESF and undetoxified acid hydrolysate, respectively. Additionally, the methane production of 12.6 mL/g-VS by mixed methanogenic consortia was obtained using the spent liquor containing volatile fatty acids. This enhanced hydrogen and methane production in subsequent microbial processes is mainly attributed to the selective removal of inhibitors in combination with an integrated carbohydrate utilization.


Assuntos
Eichhornia , Hidrogênio , Hidrogéis , Hidrólise , Metano
3.
Environ Sci Pollut Res Int ; 31(10): 14845-14857, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285256

RESUMO

The global consumption of antibiotics leads to their possible occurrence in the environment. In this context, nature-based solutions (NBS) can be used to sustainably manage and restore natural and modified ecosystems. In this work, we studied the efficiency of the NBS free-water surface wetlands (FWSWs) using Eichhornia crassipes in microcosm for enrofloxacin removal. We also explored the behavior of enrofloxacin in the system, its accumulation and distribution in plant tissues, the detoxification mechanisms, and the possible effects on plant growth. Enrofloxacin was initially taken up by E. crassipes (first 100 h). Notably, it accumulated in the sediment at the end of the experimental time. Removal rates above 94% were obtained in systems with sediment and sediment + E. crassipes. In addition, enrofloxacin was found in leaves, petioles, and roots (8.8-23.6 µg, 11-78.3 µg, and 10.2-70.7 µg, respectively). Furthermore, enrofloxacin, the main degradation product (ciprofloxacin), and other degradation products were quantified in the tissues and chlorosis was observed on days 5 and 9. Finally, the degradation products of enrofloxacin were analyzed, and four possible metabolic pathways of enrofloxacin in E. crassipes were described.


Assuntos
Eichhornia , Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Enrofloxacina , Poluentes Químicos da Água/análise , Biodegradação Ambiental
4.
Bioresour Technol ; 395: 130366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266783

RESUMO

Single cell oil (SCO) prepared from biodiesel-derived crude glycerol (BCG) and lignocellulosic biomass (LCB) via oleaginous yeasts is an intriguing alternative precursor of biodiesel. Here, a novel strategy combining alkaline BCG pretreated corn stover and dilute acid pretreated water hyacinth for SCO overproduction was developed. The mixed pretreatment liquors (MPLs) were naturally neutralized and adjusted to a proper carbon-to-nitrogen ratio beneficial for SCO overproduction by Cutaneotrichosporon oleaginosum. The toxicity of inhibitors was relieved by dilution detoxification. The enzymatic hydrolysate of solid fractions was suitable for SCO production either separately or simultaneously with MPLs. Fed-batch fermentation of the MPLs resulted in high cell mass, SCO content, and SCO titer of 80.7 g/L, 75.7 %, and 61.1 g/L, respectively. The fatty acid profiles of SCOs implied high-quality biodiesel characteristics. This study offers a novel BCG&LCB-to-SCO route integrating BCG-based pretreatment and BCG/LCB hydrolysates co-utilization, which provides a cost-effective technical route for micro-biodiesel production.


Assuntos
Basidiomycota , Eichhornia , Glicerol , Biocombustíveis , Zea mays , Lipídeos , Leveduras , Fermentação , Ácidos , Biomassa
5.
Sci Rep ; 14(1): 1586, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238408

RESUMO

Renewable resources have stood out as raw materials in producing biofuels. This study aimed to evaluate the parameters of alcohol transesterification (ethanol and methanol) and localization of collection of aquatic macrophyte Eichhornia crassipes (Mart.) Solms in the production of biodiesel by in situ transesterification. E. crassipes was collected in Dourados and Corumbá (Brazil) municipalities. The fatty acid ester composition of the biodiesel was characterized and quantified by gas chromatography. The biodiesel properties were estimated using the BiodieselAnalyzer© program prediction. The ethyl transesterification resulted in higher yields, but the localization of collection was the most relevant parameter in biodiesel production according to the Permutation Multivariate Analysis of Variance. The simulation and comparison of the physical-chemical properties of E. crassipes biodiesel and BD 100 (commercial biodiesel) were promising for commercial application.


Assuntos
Eichhornia , Biocombustíveis , Eichhornia/química , Esterificação , Etanol , Metanol
6.
Chemosphere ; 351: 141101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171396

RESUMO

Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.


Assuntos
Araceae , Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Plantas/metabolismo , Eichhornia/metabolismo , Araceae/metabolismo , Poaceae/metabolismo , Levivirus , Antivirais/farmacologia
7.
Water Sci Technol ; 89(1): 212-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214996

RESUMO

Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.


Assuntos
Eichhornia , Ácido Periódico , Poluentes Químicos da Água , Antibacterianos , Carbono , Águas Residuárias , Elétrons , Carvão Vegetal/química , Tetraciclina/química , Poluentes Químicos da Água/química , Adsorção
8.
Environ Pollut ; 342: 123063, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043767

RESUMO

Uranium is causing a hazardous impact on the human population throughout the globe. Different methods of remediation have been documented but the approach of phytoremediation has been praised throughout the globe. The bioaccumulation of uranium especially as a hyper-accumulator, has been documented in limited plant species. Therefore the current studies were conducted to elaborate on the overall U accumulation, biochemical and photochemical reactions in Alternanthera philoxeroides and Eichhornia crassipes to different concentrations of Uranium. The results showed that the accumulation of U in A.philoxeroides is higher; followed by E.crassipes; with maximum amounts of roots accumulation. Overall A.philoxeroides and E.crassipes accumulate as much as 948.88 mg/kg and 801.87 mg/kg on a dry weight basis. The biochemical results showed that Superoxide dismutase (SOD) decreased in the leaves and stem of A.philoxeroides; whereas an increase has been seen in E.crassipes in response to all treatments. peroxidase (POD) and Catalase (CAT) showed irregular response to all treatments; where the main increase was observed at T3 (120 µmol/L) and 72 h up to 138 µ/g-FW (POD) and 178 µ/g-FW (CAT) in A.philoxeroides and 1870 µ/g-FW (POD) and 73 µ/g-FW (CAT) in E.crassipes, respectively. The correlation coefficient between the fluorescence ratio Fv/Fm and the concentrations of U-treatment was significantly negative. It is concluded from the results that Uranium halted the biochemical and photochemical reaction but the plants resisted its impact while accumulating a good amount of uranium which is a good prospect for future interventions for the in-situ remediation of uranium-affected sites.


Assuntos
Eichhornia , Urânio , Poluentes Químicos da Água , Humanos , Peroxidase , Superóxido Dismutase , Biodegradação Ambiental , Poluentes Químicos da Água/análise
9.
Environ Pollut ; 341: 122933, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977360

RESUMO

Owing to their dominant wastewater origin, bioavailability, and toxicity, the occurrence and behavior of organophosphate esters (OPEs) in aquatic systems have attracted considerable attention over the past two decades. Aquatic plants can accumulate and metabolize OPEs in water, thereby playing an important role in their behavior and fate in waterbodies. However, their uptake, translocation and transformation mechanisms in plants remain incompletely characterized. We investigated the accumulation and transformation of OPEs in water hyacinth (Eichhornia crassipes) through a series of hydroponic experiments using three representative OPEs, tris(2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPP). These OPEs can not only be adsorbed onto and enter plant roots via passive diffusion pathways, which are facilitated by anion channels and/or aquaporins, but also can return to the solution when concentration gradients exist. After entry, hydrophilic TCEP showed a dominant distribution in the cell sap, strong acropetal transportability, and rapid translocation rate, whereas hydrophobic TPP was mostly retained in the root cell wall and therefore demonstrated weak acropetal transportability; TBEP with moderate hydrophilicity remained in the middle. All these OPEs can be transformed into diesters, which presented higher proportions in the cell sap and therefore have stronger acropetal transferability than their parent OPEs. TCEP exhibits the lowest biodegradability, followed by TPP and TBEP. These OPEs exerted apparent effects on plant growth, photosynthesis, and the diversity and composition of the rhizosphere microbial community.


Assuntos
Eichhornia , Retardadores de Chama , Hidroponia , Ésteres/metabolismo , Organofosfatos/metabolismo
10.
Environ Res ; 242: 117773, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029829

RESUMO

In this paper, a facile hydrothermal pretreatment and molten salt activation route was presented for preparing a self-doped porous biochar (HMBC) from a nitrogenous biomass precursor of water hyacinth. With an ultrahigh specific surface area (2240 m2 g-1), well-developed hierarchical porous structure, created internal structural defects and doped surface functionalities, HMBC exhibited an excellent adsorption performance and catalytic activity for phenol removal via peroxydisulfate (PDS) activation. Specifically, the porous structure promoted the adsorption of PDS on HMBC, forming a highly active HMBC/PDS* complex and thereby increasing the oxidation potential of the system. Meanwhile, the carbon defective structure, graphitic N and CO groups enhanced the electron transfer process, favoring the HMBC/PDS system to catalyze phenol oxidation via an electron transfer dominated pathway. Thus, the system degraded phenol effectively with an ultralow activation energy of 4.9 kJ mol-1 and a remarkable oxidant utilization efficiency of 8.2 mol mol-oxidant-1 h-1 g-1. More importantly, the system exhibited excellent resistance to water quality and good adaptability for decontaminating different organic pollutants with satisfactory mineralization efficiency. This study offers valuable insights into the rational designing of a low-cost biochar catalyst for efficient PDS activation towards organic wastewater remediation.


Assuntos
Carvão Vegetal , Eichhornia , Elétrons , Porosidade , Fenol , Oxidantes
11.
Int J Phytoremediation ; 26(4): 546-556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37667465

RESUMO

This study focuses on applying phytoremediation as a low-effective and simple process to treat wastewater laden with 1,4 dioxane (DIOX). A floating macrophyte (Eichhornia crassipes) was cultivated under hydroponic conditions (relative humidity 50-67%, photoperiod cycle 18:6 h light/dark, and 28-33 °C) and subjected to different DIOX loads between 0.0 (control) and 11.5 mg/g fresh mass (FM). The aquatic plant achieved DIOX and chemical oxygen demand (COD) removal efficiencies of 76-96% and 67-94%, respectively, within 15 days. E. crassipes could tolerate elevated DIOX-associated stresses until a dose of 8.2 mg DIOX/g, which highly influenced the oxidative defense system. Malondialdehyde (MDA) content, hydrogen peroxide (H2O2), and total phenolic compounds (TPC) increased by 7.3, 8.4, and 4.5-times, respectively, in response to operating the phytoremediation unit at a DIOX load of 11.5 mg/g. The associated succulent value, proteins, chlorophyll-a, chlorophyll-b, and pigments dropped by 39.6%, 45.8%, 51.5%, 80.8%, and 55.5%, respectively. The suggested removal mechanism of DIOX by E. crassipes could be uptake followed by phytovolatilization, whereas direct photodegradation from sunlight contributed to about 19.36% of the total DIOX removal efficiencies. Recycling the exhausted E. crassipes for biochar production was a cost-efficient strategy, making the payback period of the phytoremediation project equals to 6.96 yr.


Eichhornia crassipes could be used in phytoremediation of 1,4 dioxane (DIOX)-laden water at DIOX load< 8.2 mg/g FM. E. crassipes removed 77­97% DIOX via uptake and phytovolatilization. Recycling exhausted-plant to produce biochar was cost-efficient with 7 yr-payback period.


Assuntos
Carvão Vegetal , Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Eichhornia/metabolismo , Hidroponia , Peróxido de Hidrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Dioxanos/metabolismo , Clorofila/metabolismo
12.
Int J Phytoremediation ; 26(3): 405-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578104

RESUMO

An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.


Phytoremediation by aquatic macrophytes is a promising technique for the cleanup of environmental toxins from wastewater. To our knowledge, this is the first study reporting the integrated use of water hyacinth (WH) plants and a newly developed multi-trait microbial consortium for the simultaneous remediation of organic (i.e., petroleum hydrocarbons) and inorganic (i.e., lead) pollutants from the contaminated water. Findings of this study provide the basic but important information on the combined use of WH and microbes for remediation of mix pollution from water bodies.


Assuntos
Eichhornia , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Chumbo , Hidrocarbonetos , Plantas , Poluentes do Solo/análise , Solo
13.
Environ Res ; 244: 117917, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103779

RESUMO

Heavy metals (Cd, Ni, Zn, Cu, Cr, and Pb) are widely recognized as being hazardous to human health and environmentally deleterious. Therefore water hyacinth is used as a greener adsorption material. This study is a bibliometric analysis of research developments on the adsorption of lead (Pb) using water hyacinth (1995-2023). The data was retrieved from the Scopus database and analyzed using VOSviewer software to determine the relationship between keywords from each published document. The results of this research was divided into three parts: 1) publication output, 2) global research, and 3) keyword research. From the data obtained, it was found that there has been an increasing research trend of adsorption of lead using water hyacinth, although it is not significant and fluctuating. Overall, this study can be used by researchers to quantitatively assess trends and future directions of this research topic.


Assuntos
Eichhornia , Metais Pesados , Poluentes Químicos da Água , Humanos , Chumbo , Adsorção , Bibliometria , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 31(4): 6025-6039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135795

RESUMO

The study examines the adsorption capabilities of an environmentally friendly activated carbon derived from a novel activating agent, i.e., an edible alkali prepared from black gram plant ash, for the removal of Cr(III) and Cr(VI) ions from an aqueous environment. The results of the systematic research show impressive removal efficiencies of 95.12% for Cr(III) ions and 99.6% for Cr(VI) ions. The kinetics and equilibrium data of the adsorption process confirm to the pseudo-second-order kinetics and Freundlich isotherm model. The thermodynamic analysis reveals the adsorption process as feasible and spontaneous across the temperature range of 298-313 K. The mechanism entails electrostatic attraction and adsorption of Cr(III) and Cr(VI) ions on oppositely charged surfaces and the participation of oxygen-containing functional groups on WHAC-BGA surface in the reduction of Cr(VI) to Cr(III). This study provides valuable insights for optimizing strategies to combat chromium contamination in water sources, offering a sustainable solution with the potential for real-world application.


Assuntos
Eichhornia , Poluentes Químicos da Água , Carvão Vegetal , Álcalis , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cromo/análise , Adsorção , Cinética , Íons
15.
Mol Biol Rep ; 51(1): 35, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157124

RESUMO

BACKGROUND: Plant microbiome acts as an interface between plants and their environment, aiding in the functioning of the ecosystem, such as protection against abiotic and biotic stress along with improving nutrient uptake. The rhizosphere is an essential interface for the interaction between plants and microbes and plays a substantial part in the removal as well as uptake of heavy metals and antibiotics from contaminated locations. Eichhornia crassipes is a promising plant that contains a rich community of microbes in its rhizosphere. Microorganism's association with plants embodies a crucial pathway via which humans can also be exposed to antibiotic-resistant genes and bacteria. METHODS AND RESULTS: In our earlier study enhanced removal of ciprofloxacin was observed by plant growth-promoting Microbacterium sp. WHC1 in the presence of E. crassipes root exudates. Therefore, the V3-V4, hypervariable region of the 16 S rRNA gene was studied to assess the bacterial diversity and functional profiles of the microbiota associated with plant roots. Using the QIIME software program, 16 S rRNA data from the Next Generation Sequencing (NGS) platform was examined. Alpha diversity including Chao1, Observed Shannon, and Simpson index denote significantly higher bacterial diversity. Proteobacteria (79%) was the most abundant phylum which was present in the root samples followed by Firmicutes (8%) and Cyanobacteria (8%). Sulfuricurvum (36%) is the most abundant genus belonging to the family Helicobacteraceae and the species kujiense in the genus Sulfuricurvum is the most abundant species present in the root sample. Also, the bacterial communities in the rhizoplane of Eichhornia crassipes harbor the genes conferring resistance to beta-lactams, tetracycline, fluoroquinolones, and penams. CONCLUSION: Metagenomic studies on the E. crassipes microbiome showed that the bacterial communities constituting the root exudates of the Eichhornia aid them to survive in a polluted environment.


Assuntos
Eichhornia , Humanos , Ecossistema , Antibacterianos/metabolismo , Ciprofloxacina , Fluoroquinolonas , Bactérias/genética
16.
Environ Sci Pollut Res Int ; 30(57): 120984-120993, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947930

RESUMO

Water hyacinth (WH) is used as the substrate for biogas production due to its high lignocellulosic composition and natural abundance. The present study used thermal and chemical (alkali) pretreatment techniques to enhance biogas production from water hyacinth used as a substrate by anaerobic digestion. Thermal pretreatment was done using an autoclave at 121 °C and 15 lb (2 bar) pressure and alkali pretreatment by NaOH at two concentrations (2% and 5% w/v). The inoculum:substrate ratio for biogas production was 2:1, where cow dung was used as inoculum. Results indicated that the pretreatments increased biomass degradability and improved biogas production. Water hyacinth pretreated with 5% NaOH produced the highest amount of biogas (142.61 L/Kg VS) with a maximum methane content of 64.59%. The present study found that alkali pretreatment can modify the chemical structure and enhance WH hydrolysis, leading to enhanced energy production.


Assuntos
Biocombustíveis , Eichhornia , Hidróxido de Sódio , Metano , Álcalis , Anaerobiose
17.
Environ Monit Assess ; 195(11): 1342, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857926

RESUMO

Water Hyacinth Leaf Protein Concentrate/Graphene Oxide (WHLPC/GO) hydrogel was synthesized for the removal of Cr(VI) from wastewater. About 90% of the prepared hydrogel constitutes WHLPC. The prepared material was characterized by FT-IR and XRD. The process variables such as pH, contact time, adsorbent dosage, initial Cr(VI) concentration, and temperature were optimized using a batch mode experiment. Kinetic studies were also conducted and it was observed that the chemosorptive pseudo-second-order best described the adsorption system with a correlation coefficient (R2) of 0.984. The highest adsorption capacity of 322.00 mg/g was achieved at pH 1.0, and equilibrium was achieved within 420 min. Various isotherm models were analyzed using non-linear fitting. It was found that the Sips model provides the best fit, indicating heterogeneous and uniform active site surface adsorption of Cr(VI) on the WHLPC/GO. The reuse efficiency of the synthesized material was also found to be greater than 84% for five consecutive cycles. Thermodynamic studies were conducted and results revealed that the adsorption was spontaneous and endothermic.


Assuntos
Eichhornia , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Hidrogéis , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Monitoramento Ambiental , Cromo/análise , Termodinâmica , Concentração de Íons de Hidrogênio
18.
Environ Monit Assess ; 195(11): 1277, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801149

RESUMO

As an invasive species, water hyacinths (Eichhornia crassipes) are known to progressively proliferate and cause the ecological invasions of the aquatic environment. The incursions of the water hyacinths not only cause the disappearance of native species but gradually degrade the natural habitats of freshwater regimes. The control and management of these species are laborious task; however, transforming weed into wealth can substantially serve a sustainable approach to reduce the efforts. Therefore, the present study intends to utilize the application of geospatial techniques for mapping the water hyacinths growth in the Deepor beel (wetland) of Assam, India. Sentinel based image analysis has shown that pre-monsoon seasons has encountered massive productivity and area coverage of water hyacinth, whereas in post-monsoon seasons, productivity of water hyacinths reduces to half. Furthermore, in situ biomass estimation of the water hyacinth samples, same around the productive season has been collected and was analyzed as 6 kg (green biomass) and 1 kg (dry biomass after sun-dried). Finally, this hybrid approach evaluated the production and revenue generation from Moorhen yoga mat (handicraft item) made from the dried water hyacinths. After assuming the actual availability of 50% of total mass yield of water hyacinths, around ~ 0.8 million (8.8 lakhs) yoga mats can be commercially produced within the most productive seasons. The revenue generation from the yoga mat in the domestic and international markets evaluated around US $12.79 million (Rs. 105.85 crore) and US $15.99 million (Rs. 132.31 crore), respectively, from a single productive season. Thus, applicative intent of this study can boost potential market in Assam, renovate the weed waste of water hyacinth into wealth generation, and sustainably support the livelihoods of the local communities.


Assuntos
Eichhornia , Áreas Alagadas , Biomassa , Eichhornia/metabolismo , Monitoramento Ambiental/métodos , Índia
19.
Environ Monit Assess ; 195(10): 1210, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707630

RESUMO

Since Bangladesh already has robust pharmaceutical industries, nearly all companies owned effluent treatment plant (ETP) facilities to improve the quality of wastewater. Water retreatment utilizing affordable, accessible, and environmentally sustainable techniques have not yet been thoroughly investigated. In this study, the potential of water hyacinth and water lettuce was investigated at three different concentrations: 50% of total volume coverages (1000 g macrophytes/2000 ml water), 75% of total volume coverages (1500 g macrophytes/2000 ml water), and 100% of total volume coverages (2000 g macrophytes/2000 ml water) on the post-treated ETP's wastewater for 3 weeks in a mesocosm environment. Heavy metals, such as chromium (Cr) and nickel (Ni) along with physicochemical parameters (pH, EC, TDS, DO, and BOD5) were measured after 7 days intervals. Results indicated that water hyacinth was considerably more efficient than water lettuce at removing many factors, including metals. Water hyacinth was able to remove 79.15% of nickel and 92.97% of chromium while also increasing DO and EC by 36.72% and 14.59%, respectively, at 100% of total volume coverages. On the other hand, 100% of the total volume coverage of water lettuce decreased the pH, TDS, and BOD5 readings by 6.70%, 31.62%, and 87.61%, respectively. With each treatment, the water quality significantly improved over the control. The findings suggest that the pharmaceutical industries may improve the quality of their treated wastewater even more by integrating phytoremediation technology with traditional ETP facilities.


Assuntos
Araceae , Eichhornia , Bangladesh , Águas Residuárias , Níquel , Monitoramento Ambiental , Cromo , Preparações Farmacêuticas
20.
Medicina (Kaunas) ; 59(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37763713

RESUMO

Background and Objectives: This study was planned to investigate the anti-arthritic property of flowers of E. crassipes in a Sprague-Dawley rat model by administering Freund's Complete Adjuvant (FCA). Materials and Methods: Arthritis was induced at day 0 in all rats except negative controls, while arthritic progress and paw edema were analyzed on specific days (8th, 13th, 18th, and 23rd) via the macroscopic arthritic scale and a digital Vernier caliper, respectively. Histopathological parameters were examined using a Hematoxylin and Eosin (H&E) staining method. Blood samples were withdrawn from rats to investigate the effects of the E. crassipes flower on the mRNA expression values of inflammatory markers, via a reverse transcription PCR technique. Serum samples were used to determine prostaglandin E2 (PGE2) levels using enzyme-linked immunosorbent assay (ELISA). Values of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine, and urea, besides hematological parameters, i.e., the hemoglobin (Hb) content and complete blood count (CBC), were investigated. Results: The data showed that E. crassipes inhibited the arthritic progress and ameliorated the paw edema. The amelioration of parameters assessed via the histopathological analysis of ankle joints, as well as via hematological analysis, confirmed the diminution of rheumatoid arthritis (RA) in the plant-treated groups. Treatment with E. crassipes inhibited the expression levels of tumor necrosis factor-α (TNF-α), interleukins (IL-1ß and IL-6), nuclear factor KappaB (NF-κB), matrix metalloproteinase (MMP-2 and MMP-3), and vascular endothelial growth factor (VEGF). Serum PGE2 levels were also found to be reduced in treatment groups. A biochemical investigation revealed the improvements in hepatic markers in plant-treated groups. The data indicated that the plant has no hepatotoxic or nephrotoxic effects at the studied dose. GC-MS (Gas Chromatography-Mass Spectrometry) analysis displayed the presence of phytochemicals having known anti-inflammatory and antioxidant properties. Conclusions: Therefore, it may be concluded that E. crassipes possesses anti-arthritic characteristics that could be attributed to the modulation of pro-inflammatory cytokines, MMPs, and PGE2 levels.


Assuntos
Artrite Reumatoide , Eichhornia , Ratos , Animais , Citocinas , Dinoprostona , Fator A de Crescimento do Endotélio Vascular , Ratos Sprague-Dawley , Metaloproteases , Artrite Reumatoide/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...