Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.516
Filtrar
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611785

RESUMO

Tumor hypoxia plays an important role in the clinical management and treatment planning of various cancers. The use of 2-nitroimidazole-based radiopharmaceuticals has been the most successful for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging probes, offering noninvasive means to assess tumor hypoxia. In this study we performed detailed computational investigations of the most used compounds for PET imaging, focusing on those derived from 2-nitroimidazole: fluoromisonidazole (FMISO), fluoroazomycin arabinoside (FAZA), fluoroetanidazole (FETA), fluoroerythronitroimidazole (FETNIM) and 2-(2-nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5). Conformational analysis, structural parameters, vibrational IR and Raman properties (within both harmonic and anharmonic approximations), as well as the NMR shielding tensors and spin-spin coupling constants were obtained by density functional theory (DFT) calculations and then correlated with experimental findings, where available. Furthermore, time-dependent DFT computations reveal insight into the excited states of the compounds. Our results predict a significant change in the conformational landscape of most of the investigated compounds when transitioning from the gas phase to aqueous solution. According to computational data, the 2-nitroimidazole moiety determines to a large extent the spectroscopic properties of its derivatives. Due to the limited structural information available in the current literature for the investigated compounds, the findings presented herein deepen the current understanding of the electronic structures of these five radiopharmaceuticals.


Assuntos
Nitroimidazóis , Compostos Radiofarmacêuticos , Química Computacional , Eletrônica
2.
Sci Prog ; 107(2): 368504241242276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614463

RESUMO

Objective: This pilot study assessed the effects of electronic noise-masking earbuds on subjective sleep perception and objective sleep parameters among healthcare workers (HCWs) reporting sleep difficulties during the COVID-19 pandemic. Methods: Using a pre-post design, 77 HCWs underwent 3 nights of baseline assessment followed by a 7-night intervention period. Participants wore an at-home sleep monitoring headband to assess objective sleep measures and completed subjective self-report assessments. The difference in mean sleep measures from baseline to intervention was estimated in linear mixed models. Results: Compared to baseline assessments, HCWs reported significant improvements in sleep quality as measured by the Insomnia Severity Index (ISI) (Cohen's d = 1.74, p < 0.001) and a significant reduction in perceived sleep onset latency (SOL) during the intervention (M = 17.2 minutes, SD = 7.7) compared to baseline (M = 24.7 minutes, SD = 16.1), (Cohen's d = -0.42, p = 0.001). There were no significant changes in objective SOL (p = 0.703). However, there was a significant interaction between baseline objective SOL (<20 minutes vs >20 minutes) and condition (baseline vs intervention) (p = 0.002), such that individuals with objective SOL >20 minutes experienced a significant decrease in objective SOL during the intervention period compared to baseline (p = 0.015). Conclusions: HCWs experienced a significant improvement in perceived SOL and ISI scores after using the electronic noise-masking earbuds. Our data provide preliminary evidence for a nonpharmacological intervention to improve the sleep quality of HCWs which should be confirmed by future controlled studies.


Assuntos
Pandemias , Sono , Humanos , Projetos Piloto , Tecnologia , Eletrônica , Pessoal de Saúde
3.
JAMA Netw Open ; 7(4): e246565, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619840

RESUMO

Importance: Timely tests are warranted to assess the association between generative artificial intelligence (GenAI) use and physicians' work efforts. Objective: To investigate the association between GenAI-drafted replies for patient messages and physician time spent on answering messages and the length of replies. Design, Setting, and Participants: Randomized waiting list quality improvement (QI) study from June to August 2023 in an academic health system. Primary care physicians were randomized to an immediate activation group and a delayed activation group. Data were analyzed from August to November 2023. Exposure: Access to GenAI-drafted replies for patient messages. Main Outcomes and Measures: Time spent (1) reading messages, (2) replying to messages, (3) length of replies, and (4) physician likelihood to recommend GenAI drafts. The a priori hypothesis was that GenAI drafts would be associated with less physician time spent reading and replying to messages. A mixed-effects model was used. Results: Fifty-two physicians participated in this QI study, with 25 randomized to the immediate activation group and 27 randomized to the delayed activation group. A contemporary control group included 70 physicians. There were 18 female participants (72.0%) in the immediate group and 17 female participants (63.0%) in the delayed group; the median age range was 35-44 years in the immediate group and 45-54 years in the delayed group. The median (IQR) time spent reading messages in the immediate group was 26 (11-69) seconds at baseline, 31 (15-70) seconds 3 weeks after entry to the intervention, and 31 (14-70) seconds 6 weeks after entry. The delayed group's median (IQR) read time was 25 (10-67) seconds at baseline, 29 (11-77) seconds during the 3-week waiting period, and 32 (15-72) seconds 3 weeks after entry to the intervention. The contemporary control group's median (IQR) read times were 21 (9-54), 22 (9-63), and 23 (9-60) seconds in corresponding periods. The estimated association of GenAI was a 21.8% increase in read time (95% CI, 5.2% to 41.0%; P = .008), a -5.9% change in reply time (95% CI, -16.6% to 6.2%; P = .33), and a 17.9% increase in reply length (95% CI, 10.1% to 26.2%; P < .001). Participants recognized GenAI's value and suggested areas for improvement. Conclusions and Relevance: In this QI study, GenAI-drafted replies were associated with significantly increased read time, no change in reply time, significantly increased reply length, and some perceived benefits. Rigorous empirical tests are necessary to further examine GenAI's performance. Future studies should examine patient experience and compare multiple GenAIs, including those with medical training.


Assuntos
Inteligência Artificial , Médicos , Humanos , Feminino , Adulto , Sistemas Computadorizados de Registros Médicos , Comunicação , Eletrônica
4.
Mikrochim Acta ; 191(5): 250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587660

RESUMO

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.


Assuntos
Realidade Aumentada , Pele , Medicina de Precisão , Eletrônica , Atenção à Saúde
5.
J Cardiovasc Pharmacol Ther ; 29: 10742484241242702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592084

RESUMO

INTRODUCTION: It is well documented that cardiovascular disease (CVD) is the leading cause of death in the US and worldwide, with smoking being the most preventable cause. Additionally, most smokers die from thrombotic-based diseases, in which platelets play a major role. To this end, because of the proven harm of smoking, several novel tobacco products such as electronic(e)-waterpipe have been gaining popularity among different sectors of the population, partly due to their "false" safety claims. While many investigators have focused on the negative health effects of traditional cigarettes and e-cigarettes on the cardiovascular system, virtually little or nothing is known about e-waterpipes, which we investigated herein. METHODS AND MATERIALS: To investigate their occlusive CVD effects, we employed a whole-body mouse exposure model of e-waterpipe vape/smoke and exposed C57BL/6J male mice (starting at 7 weeks of age) for 1 month, with the controls exposed to clean air. Exposures took place seven times a week, according to the well-known Beirut protocol, which has been employed in many studies, as it mimics real-life waterpipe exposure scenarios; specifically, 171 puffs of 530 ml volume of the e-liquid at 2.6 s puff duration and 17 s puff interval. RESULTS: The e-waterpipe exposed mice had shortened bleeding and occlusion times, when compared to the clean air controls, indicating a prothrombotic phenotype. As for the mechanism underlying this phenotype, we found that e-waterpipe exposed platelets exhibited enhanced agonist-triggered aggregation and dense granule secretion. Also, flow cytometry analysis of surface markers of platelet activation showed that both P-selectin and integrin GPIIb-IIIa activation were enhanced in the e-waterpipe exposed platelets, relative to the controls. Finally, platelet spreading and Akt phosphorylation were also more pronounced in the exposed mice. CONCLUSION: We document that e-waterpipe exposure does exert untoward effects in the context of thrombosis-based CVD, in part, via promoting platelet hyperreactivity.


Assuntos
Doenças Cardiovasculares , Sistemas Eletrônicos de Liberação de Nicotina , Fumar Cachimbo de Água , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Doenças Cardiovasculares/etiologia , Modelos Animais de Doenças , Eletrônica
6.
Sci Adv ; 10(14): eadn3784, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569040

RESUMO

Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.


Assuntos
Encéfalo , Cabeça , Animais , Camundongos , Reprodutibilidade dos Testes , Crânio , Eletrônica , Tecnologia sem Fio
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
8.
Food Res Int ; 184: 114257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609235

RESUMO

High-temperature Daqu (HTD) is the starter for producing sauce-flavor Baijiu, with different-colored Daqu (white, yellow, and black) reflecting variations in fermentation chamber conditions, chemical reactions, and associated microbiota. Understanding the relationship between Daqu characteristics and flavor/taste is challenging yet vital for improving Baijiu fermentation. This study utilized metagenomic sequencing, physicochemical analysis, and electronic sensory evaluation to compare three different-colored HTD and their roles in fermentation. Fungi and bacteria dominated the HTD-associated microbiota, with fungi increasing as the fermentation temperature rose. The major fungal genera were Aspergillus (40.17%) and Kroppenstedtia (21.16%), with Aspergillus chevalieri (25.65%) and Kroppenstedtia eburnean (21.07%) as prevalent species. Microbial communities, functionality, and physicochemical properties, particularly taste and flavor, were color-specific in HTD. Interestingly, the microbial communities in different-colored HTDs demonstrated robust functional complementarity. White Daqu exhibited non-significantly higher α-diversity compared to the other two Daqu. It played a crucial role in breaking down substrates such as starch, proteins, hyaluronic acid, and glucan, contributing to flavor precursor synthesis. Yellow Daqu, which experienced intermediate temperature and humidity, demonstrated good esterification capacity and a milder taste profile. Black Daqu efficiently broke down raw materials, especially complex polysaccharides, but had inferior flavor and taste. Notably, large within-group variations in physicochemical quality and microbial composition were observed, highlighting limitations in color-based HTD quality assessment. Water content in HTD was associated with Daqu flavor, implicating its crucial role. This study revealed the complementary roles of the three HTD types in sauce-flavor Baijiu fermentation, providing valuable insights for product enhancement.


Assuntos
Metagenoma , Microbiota , Temperatura , Análise por Conglomerados , Eletrônica
9.
Biosens Bioelectron ; 255: 116257, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574560

RESUMO

Seamless integration and conformal contact of soft electronics with tissue surfaces have emerged as major challenges in realizing accurate monitoring of biological signals. However, the mechanical mismatch between the electronics and biological tissues impedes the conformal interfacing between them. Attempts have been made to utilize soft hydrogels as the bioelectronic materials to realize tissue-comfortable bioelectronics. However, hydrogels have several limitations in terms of their electrical and mechanical properties. In this study, we present the development of a 3D-printable modulus-tunable hydrogel with multiple functionalities. The hydrogel has a cross-linked double network, which greatly improves its mechanical properties. Functional fillers such as XLG or functionalized carbon nanotubes (fCNT) can be incorporated into the hydrogel to provide tunable mechanics (Young's modulus of 10-300 kPa) and electrical conductivity (electrical conductivity of ∼20 S/m). The developed hydrogel exhibits stretchability (∼1000% strain), self-healing ability (within 5 min), toughness (400-731 kJ/m3) viscoelasticity, tissue conformability, and biocompatibility. Upon examining the rheological properties in the modulated region, hydrogels can be 3D printed to customize the shape and design of the bioelectronics. These hydrogels can be fabricated into ring-shaped strain sensors for wearable sensor applications.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Hidrogéis , Tinta , Condutividade Elétrica , Eletrônica , Impressão Tridimensional
10.
PLoS One ; 19(4): e0301363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603737

RESUMO

The behavior of an illuminated solar module can be characterized by its power-voltage curve. Tracking the peak of this curve is essential to harvest the maximum power by the module. The position of the peak varies with temperature and irradiance and needs to be traced. Under partial shading conditions, the number of peaks increases and makes it more difficult to find the global maximum power point (MPP). Various methods are used for maximum power point tracking (MPPT) that are based on iterations. These methods are time-consuming and fail to work satisfactorily under rapidly changing environmental conditions. In this paper, a novel algorithm is proposed that for the first time, utilizes computer vision to find the global maximum power point. This algorithm, which is implemented in Matlab/Simulink, is free of voltage iterations and gives the real-time data for the maximum power point. The proposed algorithm increases the speed and the reliability of the MPP tracking via replacing analogue electronics calculations by digital means. The validity of the algorithm is experimentally verified.


Assuntos
Algoritmos , Computadores , Reprodutibilidade dos Testes , Eletrônica , Temperatura
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612569

RESUMO

The treatment of the bulky Rind-based dibromosilanes, (Rind)2SiBr2 (2) [Rind = 1,1,7,7-tetra-R1-3,3,5,5-tetra-R2-s-hydrindacen-4-yl: EMind (a: R1 = Et, R2 = Me) and Eind (b: R1 = R2 = Et)], with two equivalents of tBuLi in Et2O at low temperatures resulted in the formation of blue solutions derived from the diarylsilylenes, (Rind)2Si: (3). Upon warming the solutions above -20 °C, the blue color gradually faded, accompanying the decomposition of 3 and yielding cyclic hydrosilanes (4) via intramolecular C-H bond insertion at the Si(II) center. The molecular structures of the bulky Eind-based 3b and 4b were confirmed by X-ray crystallography. Thus, at -20 °C, blue crystals were formed (Crystal-A), which were identified as mixed crystals of 3b and 4b. Additionally, colorless crystals of 4b as a singular component were isolated (Crystal-B), whose structure was also determined by an X-ray diffraction analysis. Although the isolation of 3 was difficult due to their thermally labile nature, their structural characteristics and electronic properties were discussed based on the experimental findings complemented by computational results. We also examined the hydrolysis of 3b to afford the silanol, (Eind)2SiH(OH) (5b).


Assuntos
Temperatura Baixa , Fibras na Dieta , Cristalografia por Raios X , Eletrônica , Hidrólise
12.
BMC Med Res Methodol ; 24(1): 81, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561661

RESUMO

BACKGROUND: Epidemiological studies in refugee settings are often challenged by the denominator problem, i.e. lack of population at risk data. We develop an empirical approach to address this problem by assessing relationships between occupancy data in refugee centres, number of refugee patients in walk-in clinics, and diseases of the digestive system. METHODS: Individual-level patient data from a primary care surveillance system (PriCarenet) was matched with occupancy data retrieved from immigration authorities. The three relationships were analysed using regression models, considering age, sex, and type of centre. Then predictions for the respective data category not available in each of the relationships were made. Twenty-one German on-site health care facilities in state-level registration and reception centres participated in the study, covering the time period from November 2017 to July 2021. RESULTS: 445 observations ("centre-months") for patient data from electronic health records (EHR, 230 mean walk-in clinics visiting refugee patients per month and centre; standard deviation sd: 202) of a total of 47.617 refugee patients were available, 215 for occupancy data (OCC, mean occupancy of 348 residents, sd: 287), 147 for both (matched), leaving 270 observations without occupancy (EHR-unmatched) and 40 without patient data (OCC-unmatched). The incidence of diseases of the digestive system, using patients as denominators in the different sub-data sets were 9.2% (sd: 5.9) in EHR, 8.8% (sd: 5.1) when matched, 9.6% (sd: 6.4) in EHR- and 12% (sd 2.9) in OCC-unmatched. Using the available or predicted occupancy as denominator yielded average incidence estimates (per centre and month) of 4.7% (sd: 3.2) in matched data, 4.8% (sd: 3.3) in EHR- and 7.4% (sd: 2.7) in OCC-unmatched. CONCLUSIONS: By modelling the ratio between patient and occupancy numbers in refugee centres depending on sex and age, as well as on the total number of patients or occupancy, the denominator problem in health monitoring systems could be mitigated. The approach helped to estimate the missing component of the denominator, and to compare disease frequency across time and refugee centres more accurately using an empirically grounded prediction of disease frequency based on demographic and centre typology. This avoided over-estimation of disease frequency as opposed to the use of patients as denominators.


Assuntos
Refugiados , Humanos , Registros Eletrônicos de Saúde , Emigração e Imigração , Fatores de Risco , Eletrônica
13.
Science ; 384(6691): 42, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574146

RESUMO

Ingestible electronic pills can be used for targeted noninvasive neuromodulation.


Assuntos
Encéfalo , Eletrônica
14.
Nat Commun ; 15(1): 2906, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575578

RESUMO

Mechano-sensitive hair-like sensilla (MSHS) have an ingenious and compact three-dimensional structure and have evolved widely in living organisms to perceive multidirectional mechanical signals. Nearly all MSHS are iontronic or electronic, including their biomimetic counterparts. Here, an all-optical mechano-sensor mimicking MSHS is prototyped and integrated based on a thin-walled glass microbubble as a flexible whispering-gallery-mode resonator. The minimalist integrated device has a good directionality of 32.31 dB in the radial plane of the micro-hair and can detect multidirectional displacements and forces as small as 70 nm and 0.9 µN, respectively. The device can also detect displacements and forces in the axial direction of the micro-hair as small as 2.29 nm and 3.65 µN, respectively, and perceive different vibrations. This mechano-sensor works well as a real-time, directional mechano-sensory whisker in a quadruped cat-type robot, showing its potential for innovative mechano-transduction, artificial perception, and robotics applications.


Assuntos
Robótica , Sensilas , Animais , Cabelo , Fenômenos Mecânicos , Eletrônica
15.
PLoS One ; 19(4): e0298590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578739

RESUMO

In power electronics systems, system design and operation often involve multiple time and space scales, ranging from nanosecond switching dynamics to hour-level system operation behavior. Due to the complexity of these systems and the rise of wide-gap semiconductor technology, a series of multi-scale phenomena have emerged that are difficult to ignore. The high frequency of switching operations makes multi-scale effects particularly significant, including the fast dynamic response of the power loop, EMI, and heat conduction problems. They are key factors that must be considered in the design to ensure the efficient and reliable operation of power electronic devices. This study proposes the construction and simulation of a joint scale model for power electronic converters based on wavelet decomposition and reconstruction algorithms to address the multi-scale phenomenon and limitations of single-scale power electronic converters. Firstly, a joint scale model for power electronic converters at both macro and micro-scales was established, targeting both single-scale models and simple combinations of multiple scale models for power electronic converters. The traditional single-scale model is sufficient to describe the average behavior of the converter, but it has serious limitations in capturing fast transient processes and high-frequency switching behavior in power electronic systems. These limitations often manifest themselves when there is a need to capture fine timescales of detail. By transforming between the time domain and the frequency domain, wavelet decomposition enables the model to capture both macroscopic average characteristics and microscopic transient dynamics. The wavelet reconstruction algorithm can simulate all kinds of fast changes in the actual working process more accurately and compress irrelevant information while retaining key signal features, so as to optimize the simulation performance of the model. Secondly, this algorithm is used to analyze BC in short time scale. Finally, the short time scale characteristics of power electronic converters are analyzed. Experimental results show that the fusion of wavelet decomposition and reconstruction algorithm enhances the accuracy of the power electronic converter model and improves the performance of the system. The model achieves an error reduction of nearly 3% in the calculation step size of 10-7s, which has a significant impact on the high precision requirements of high-frequency operations. In addition, the optimal calculation step size of 8×10-8s achieves an error reduction of more than 14%, making an important contribution to the transient analysis and fine structure simulation. The wavelet algorithm can improve the accuracy of multi-scale modeling in power electronic system and reduce the simulation time. The reduction of error not only shows the improvement of the accuracy of the model, but also shows its practical significance in the design and test of the actual power electronic system. The reduction in error reveals the ability to more accurately predict and mitigate potential performance problems in matching tests with actual hardware, as well as its ability to adapt to emerging wide bandgap semiconductor materials and structures.


Assuntos
Algoritmos , Eletrônica , Simulação por Computador , Frequência Cardíaca
16.
J Med Internet Res ; 26: e47133, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530343

RESUMO

BACKGROUND: Digital transformation offers new opportunities to improve the exchange of information between different health care providers, including inpatient, outpatient and care facilities. As information is especially at risk of being lost when a patient is discharged from a hospital, digital transformation offers great opportunities to improve intersectoral discharge management. However, most strategies for improvement have focused on structures within the hospital. OBJECTIVE: This study aims to evaluate the implementation of a digitalized discharge management system, the project "Optimizing instersectoral discharge management" (SEKMA, derived from the German Sektorübergreifende Optimierung des Entlassmanagements), and its impact on the readmission rate. METHODS: A mixed methods design was used to evaluate the implementation of a digitalized discharge management system and its impact on the readmission rate. After the implementation, the congruence between the planned (logic model) and the actual intervention was evaluated using a fidelity analysis. Finally, bivariate and multivariate analyses were used to evaluate the effectiveness of the implementation on the readmission rate. For this purpose, a difference-in-difference approach was adopted based on routine data of hospital admissions between April 2019 and August 2019 and between April 2022 and August 2022. The department of vascular surgery served as the intervention group, in which the optimized discharge management was implemented in April 2022. The departments of internal medicine and cardiology formed the control group. RESULTS: Overall, 26 interviews were conducted, and we explored 21 determinants, which can be categorized into 3 groups: "optimization potential," "barriers," and "enablers." On the basis of these results, 19 strategies were developed to address the determinants, including a lack of networking among health care providers, digital information transmission, and user-unfriendliness. On the basis of these strategies, which were prioritized by 11 hospital physicians, a logic model was formulated. Of the 19 strategies, 7 (37%; eg, electronic discharge letter, providing mobile devices to the hospital's social service, and generating individual medication plans in the format of the national medication plan) have been implemented in SEKMA. A survey on the fidelity of the application of the implemented strategies showed that 3 of these strategies were not yet widely applied. No significant effect of SEKMA on readmissions was observed in the routine data of 14,854 hospital admissions (P=.20). CONCLUSIONS: This study demonstrates the potential of optimizing intersectoral collaboration for patient care. Although a significant effect of SEKMA on readmissions has not yet been observed, creating a digital ecosystem that connects different health care providers seems to be a promising approach to ensure secure and fast networking of the sectors. The described intersectoral optimization of discharge management provides a structured template for the implementation of a similar local digital care networking infrastructure in other care regions in Germany and other countries with a similarly fragmented health care system.


Assuntos
Cardiologia , Humanos , Computadores de Mão , Eletrônica , Readmissão do Paciente
17.
Urogynecology (Phila) ; 30(3): 181-187, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484230

RESUMO

IMPORTANCE: Minimal data compare patient satisfaction with completing paper versus electronic evaluations. OBJECTIVES: This study aimed to compare patient satisfaction with completing paper versus electronic evaluations. Secondary objectives were assessing age, education, and socioeconomic status with comfort with technology; preference for evaluation type; and timeliness of completing evaluations. STUDY DESIGN: This was a single-center randomized trial comparing paper versus electronic patient evaluations of health care providers. Study participation occurred at the end of clinic visits. RESULTS: Among 145 participants, 73 (50.3%) were analyzed as paper versus 72 (49.7%) as electronic. Groups were similar in age, race, education level, income, insurance type, technology comfort, and technology use. Groups were similar in finding ease (P = 0.99) and satisfaction (P = 0.76) with their randomized method. For participants randomized to paper, 34% preferred paper, 25% preferred electronic, and 41% had no preference. Electronic feedback took longer to complete (4.5 minutes vs 3.4 minutes, P < 0.001). Older participants took longer to complete the evaluation (4.5 minutes vs 3.2 minutes, P < 0.001), had less internet use (P = 0.01), and were less likely to own a computer (P = 0.03) than younger participants. There were differences by education level for comfort with technology (P = 0.007) and internet use (P = 0.016). There were no differences in ease of feedback completion or satisfaction when comparing age, education status, or income status. CONCLUSIONS: Patients were satisfied with paper and electronic health care provider evaluations, regardless of age or other demographics. Evaluations were completed quickly during visits. Requesting feedback from patients via multiple modalities is feasible in a varied patient population.


Assuntos
Satisfação do Paciente , Satisfação Pessoal , Humanos , Retroalimentação , Eletrônica , Pessoal de Saúde
18.
AJNR Am J Neuroradiol ; 45(4): 361, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485195

Assuntos
Eletrônica , Humanos
19.
JMIR Public Health Surveill ; 10: e50407, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506899

RESUMO

BACKGROUND: The Ministry of Health in Côte d'Ivoire and the International Training and Education Center for Health at the University of Washington, funded by the United States President's Emergency Plan for AIDS Relief, have been collaborating to develop and implement the Open-Source Enterprise-Level Laboratory Information System (OpenELIS). The system is designed to improve HIV-related laboratory data management and strengthen quality management and capacity at clinical laboratories across the nation. OBJECTIVE: This evaluation aimed to quantify the effects of implementing OpenELIS on data quality for laboratory tests related to HIV care and treatment. METHODS: This evaluation used a quasi-experimental design to perform an interrupted time-series analysis to estimate the changes in the level and slope of 3 data quality indicators (timeliness, completeness, and validity) after OpenELIS implementation. We collected paper and electronic records on clusters of differentiation 4 (CD4) testing for 48 weeks before OpenELIS adoption until 72 weeks after. Data collection took place at 21 laboratories in 13 health regions that started using OpenELIS between 2014 and 2020. We analyzed the data at the laboratory level. We estimated odds ratios (ORs) by comparing the observed outcomes with modeled counterfactual ones when the laboratories did not adopt OpenELIS. RESULTS: There was an immediate 5-fold increase in timeliness (OR 5.27, 95% CI 4.33-6.41; P<.001) and an immediate 3.6-fold increase in completeness (OR 3.59, 95% CI 2.40-5.37; P<.001). These immediate improvements were observed starting after OpenELIS installation and then maintained until 72 weeks after OpenELIS adoption. The weekly improvement in the postimplementation trend of completeness was significant (OR 1.03, 95% CI 1.02-1.05; P<.001). The improvement in validity was not statistically significant (OR 1.34, 95% CI 0.69-2.60; P=.38), but validity did not fall below pre-OpenELIS levels. CONCLUSIONS: These results demonstrate the value of electronic laboratory information systems in improving laboratory data quality and supporting evidence-based decision-making in health care. These findings highlight the importance of OpenELIS in Côte d'Ivoire and the potential for adoption in other low- and middle-income countries with similar health systems.


Assuntos
Sistemas de Informação em Laboratório Clínico , Infecções por HIV , Humanos , Laboratórios Clínicos , Laboratórios , Côte d'Ivoire , Eletrônica
20.
Nat Commun ; 15(1): 2000, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448437

RESUMO

Bioresorbable neural implants based on emerging classes of biodegradable materials offer a promising solution to the challenges of secondary surgeries for removal of implanted devices required for existing neural implants. In this study, we introduce a fully bioresorbable flexible hybrid opto-electronic system for simultaneous electrophysiological recording and optogenetic stimulation. The flexible and soft device, composed of biodegradable materials, has a direct optical and electrical interface with the curved cerebral cortex surface while exhibiting excellent biocompatibility. Optimized to minimize light transmission losses and photoelectric artifact interference, the device was chronically implanted in the brain of transgenic mice and performed to photo-stimulate the somatosensory area while recording local field potentials. Thus, the presented hybrid neural implant system, comprising biodegradable materials, promises to provide monitoring and therapy modalities for versatile applications in biomedicine.


Assuntos
Implantes Absorvíveis , Depressores do Sistema Nervoso Central , Animais , Camundongos , Optogenética , Artefatos , Encéfalo , Eletrônica , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...