Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.372
Filtrar
5.
Proc Natl Acad Sci U S A ; 121(28): e2400151121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954548

RESUMO

Protein folding and evolution are intimately linked phenomena. Here, we revisit the concept of exons as potential protein folding modules across a set of 38 abundant and conserved protein families. Taking advantage of genomic exon-intron organization and extensive protein sequence data, we explore exon boundary conservation and assess the foldon-like behavior of exons using energy landscape theoretic measurements. We found deviations in the exon size distribution from exponential decay indicating selection in evolution. We show that when taken together there is a pronounced tendency to independent foldability for segments corresponding to the more conserved exons, supporting the idea of exon-foldon correspondence. While 45% of the families follow this general trend when analyzed individually, there are some families for which other stronger functional determinants, such as preserving frustrated active sites, may be acting. We further develop a systematic partitioning of protein domains using exon boundary hotspots, showing that minimal common exons correspond with uninterrupted alpha and/or beta elements for the majority of the families but not for all of them.


Assuntos
Éxons , Dobramento de Proteína , Éxons/genética , Humanos , Proteínas/genética , Proteínas/química , Evolução Molecular , Íntrons/genética
8.
HLA ; 104(1): e15590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015092

RESUMO

Non-classical HLA-G*01:46 differs from G*01:01:03:03 at one position in exon 3.


Assuntos
Alelos , Éxons , Antígenos HLA-G , Humanos , Antígenos HLA-G/genética , Brasil , Teste de Histocompatibilidade , Sequência de Bases , Análise de Sequência de DNA/métodos
9.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928478

RESUMO

Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.


Assuntos
Alelos , Proteína BRCA1 , Síndrome Hereditária de Câncer de Mama e Ovário , Humanos , Proteína BRCA1/genética , Feminino , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Pessoa de Meia-Idade , Predisposição Genética para Doença , Adulto , Efeito Fundador , Éxons/genética , Neoplasias da Mama/genética , Heterozigoto , Mutação , México , Neoplasias Ovarianas/genética , Relevância Clínica
18.
Genes (Basel) ; 15(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674387

RESUMO

Salinity in plants generates an osmotic and ionic imbalance inside cells that compromises the viability of the plant. Rab GTPases, the largest family within the small GTPase superfamily, play pivotal roles as regulators of vesicular trafficking in plants, including the economically important and globally cultivated tomato (Solanum lycopersicum). Despite their significance, the specific involvement of these small GTPases in tomato vesicular trafficking and their role under saline stress remains poorly understood. In this work, we identified and classified 54 genes encoding Rab GTPases in cultivated tomato, elucidating their genomic distribution and structural characteristics. We conducted an analysis of duplication events within the S. lycopersicum genome, as well as an examination of gene structure and conserved motifs. In addition, we investigated the transcriptional profiles for these Rab GTPases in various tissues of cultivated and wild tomato species using microarray-based analysis. The results showed predominantly low expression in most of the genes in both leaves and vegetative meristem, contrasting with notably high expression levels observed in seedling roots. Also, a greater increase in gene expression in shoots from salt-tolerant wild tomato species was observed under normal conditions when comparing Solanum habrochaites, Solanum pennellii, and Solanum pimpinellifolium with S. lycopersicum. Furthermore, an expression analysis of Rab GTPases from Solanum chilense in leaves and roots under salt stress treatment were also carried out for their characterization. These findings revealed that specific Rab GTPases from the endocytic pathway and the trans-Golgi network (TGN) showed higher induction in plants exposed to saline stress conditions. Likewise, disparities in gene expression were observed both among members of the same Rab GTPase subfamily and between different subfamilies. Overall, this work emphasizes the high degree of conservation of Rab GTPases, their high functional diversification in higher plants, and the essential role in mediating salt stress tolerance and suggests their potential for further exploration of vesicular trafficking mechanisms in response to abiotic stress conditions.


Assuntos
Proteínas de Plantas , Solanum lycopersicum , Proteínas rab de Ligação ao GTP , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Filogenia , Duplicação Gênica , Íntrons , Éxons , Motivos de Aminoácidos , Vesículas Transportadoras/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
HLA ; 103(2): e15410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372615

RESUMO

Identification of the novel HLA-C*02:10:09 allele that differs from HLA-C*02:10:01:01 at one position in exon 1.


Assuntos
Genes MHC Classe I , Antígenos HLA-C , Humanos , Antígenos HLA-C/genética , Brasil , Alelos , Éxons/genética
20.
HLA ; 103(1): e15343, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193612

RESUMO

HLA-A*68:190:02 differs from A*68:190:01 by a single synonymous nucleotide change in exon 2.


Assuntos
Medula Óssea , Humanos , Alelos , Brasil , Éxons/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA