Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.085
Filtrar
1.
Zhonghua Yi Xue Za Zhi ; 104(22): 2074-2078, 2024 Jun 11.
Artigo em Chinês | MEDLINE | ID: mdl-38858218

RESUMO

This study reports a family of patients with 11ß-hydroxylase deficiency (11ß-OHD) caused by a novel mutation in the CYP11B1 gene, and analyzes its clinical and genetic characteristics. The clinical data of a patient with intractable hypertension at Air Force Medical Center on May 16, 2014 were retrospectively analyzed. The patient was clinically diagnosed with congenital adrenal cortical hyperplasia. The clinical data of the patient were further collected and the peripheral blood samples of the patient, his parents and his sister were collected for CYP11B1(NM_000497) gene sequencing, suggesting that the patient had compound heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9 and exon 5:c.905_907 delATGinsTT, p.Asp302Valfs*23, both of which were pathogenic variants. The patient's father and sister carried heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9, and the mother carried heterozygous mutations in exon 5:c.905_907delATGinsTT, p.Asp302Valfs*23. This study is the first to report a new compound heterozygous mutation in exon 1:c.199delG and exon 5 c.905_907 delATGinsTT of CYP11B1 gene, enriching the database of 11ß-OHD mutations and providing information to further understand the genetic mechanism of the disease.


Assuntos
Hiperplasia Suprarrenal Congênita , Mutação , Esteroide 11-beta-Hidroxilase , Humanos , Esteroide 11-beta-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/genética , Masculino , Feminino , Estudos Retrospectivos , Éxons , Heterozigoto , Linhagem
2.
Sci Rep ; 14(1): 13246, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853173

RESUMO

Although alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial-mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Progressão da Doença , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Linhagem Celular Tumoral , Éxons/genética
3.
PLoS One ; 19(6): e0298965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829854

RESUMO

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Assuntos
Processamento Alternativo , Cromatina , Disautonomia Familiar , Éxons , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Humanos , Éxons/genética , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Células HEK293 , Histonas/metabolismo , Camundongos Transgênicos , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Cinética , Splicing de RNA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
4.
Nat Commun ; 15(1): 4881, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849358

RESUMO

N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.


Assuntos
Adenosina , Arabidopsis , Regulação da Expressão Gênica de Plantas , Oryza , RNA Mensageiro , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica/métodos , Estabilidade de RNA/genética , Éxons/genética , Códon de Terminação/genética
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230236, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853562

RESUMO

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Processamento Alternativo , Éxons , Potenciação de Longa Duração , Proteínas do Tecido Nervoso , Receptores de N-Metil-D-Aspartato , Quinases da Família src , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Quinases da Família src/metabolismo , Quinases da Família src/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Masculino , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos Endogâmicos C57BL
6.
Ital J Pediatr ; 50(1): 112, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840186

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that results in the abnormal development of structures derived from ectodermal tissue. This rare condition predominantly affects the hair, nails, eccrine glands, and teeth. While HED can be caused by various genes, the EDA, EDAR, EDARADD, and WNT10A genes account for approximately 90% of cases. Notably, HED forms associated with variants in the EDA, EDAR, or EDARADD genes may exhibit similar phenotypes due to defects in a common signaling pathway. Proper interaction among the products of these genes is crucial for the activation of the nuclear factor (NF-κB) signaling pathway, which subsequently regulates the transcription of targeted genes. The EDARADD gene, in particular, harbors one of the rarest reported variants associated with HED. CASE PRESENTATION: Five-and two-years-old brothers born into consanguineous parents were examined at our outpatient medical genetics clinic at Sanliurfa Training and Research Hospital, Turkey. Both displayed the same classical phenotypic features of HED. The elder had a very sparse dark and brittle hair, sparse eyebrows and eyelashes, conical upper and lower premolar teeth with hypodontia, widely spaced teeth, very dry skin, mildly prominent forehead, and periorbital wrinkles. The younger one showed the same, but less severe, clinical features. After thorough examination and patient history evaluation, targeted next-generation sequencing analysis yielded the novel homozygous insertion variant c.322_323insCGGGC p.(Arg108ProfsTer7) in EDARADD. The mutation has not been reported to date in the literature. CONCLUSIONS: In this report, we present two siblings exhibiting classical HED symptoms and a novel insertion variant of the EDARADD gene, which leads to a frameshift introducing a stop codon. Both brothers inherited such mutation from their parents, who were heterozygous carriers of the same variant. The present study may shed light about the pathogenic mechanisms underlying HED, and expand the spectrum of EDARADD gene variants associated with this condition.


Assuntos
Proteína de Domínio de Morte Associada a Edar , Mutação da Fase de Leitura , Humanos , Masculino , Proteína de Domínio de Morte Associada a Edar/genética , Pré-Escolar , Éxons , Homozigoto , Irmãos , Displasia Ectodérmica Anidrótica Tipo 1/genética
7.
Orphanet J Rare Dis ; 19(1): 238, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879497

RESUMO

BACKGROUND: Biallelic pathogenic variants in USH2A lead to Usher syndrome or non-syndromic retinitis pigmentosa, and shown to have geographical and ethnical distribution in previous studies. This study provided a deeper understanding of the detailed clinical features using multimodal imaging, genetic spectrum, and genotype-phenotype correlations of USH2A-related retinal dystrophies in Taiwan. RESULTS: In our cohort, the mean age at first visit was 47.66 ± 13.54 years, and the mean age at symptom onset, which was referred to the onset of nyctalopia and/or visual field constriction, was 31.21 ± 15.24 years. Among the variants identified, 23 (50%) were missense, 10 (22%) were splicing variants, 8 (17%) were nonsense, and 5 (11%) were frameshift mutations. The most predominant variant was c.2802T>G, which accounted for 21% of patients, and was located in exon 13. Patients with truncated alleles had significantly earlier symptom onset and seemly poorer disease progression regarding visual acuity, ellipsoid zone line length, and hypofluorescent lesions in the macula than those who had the complete gene. However, the clinical presentation revealed similar progression between patients with and without the c.2802T>G variant. During long-term follow-up, the patients had different ellipsoid zone line progression rates and were almost evenly distributed in the fast, moderate, and slow progression subgroups. Although a younger onset age and a smaller baseline intact macular area was observed in the fast progression subgroup, the results showed no significant difference. CONCLUSIONS: This is the first cohort study to provide detailed genetic and longitudinal clinical analyses of patients with USH2A-related retinal dystrophies in Taiwan. The mutated allele frequency in exon 13 was high in Taiwan due to the predominant c.2802T>G variant. Moreover, truncated variants greatly impacted disease progression and determined the length of therapeutic windows. These findings provide insight into the characteristics of candidates for future gene therapies.


Assuntos
Éxons , Proteínas da Matriz Extracelular , Distrofias Retinianas , Humanos , Pessoa de Meia-Idade , Taiwan , Masculino , Proteínas da Matriz Extracelular/genética , Feminino , Adulto , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Éxons/genética , Síndromes de Usher/genética , Prevalência , Adulto Jovem , Idoso
8.
Nat Commun ; 15(1): 5136, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879605

RESUMO

Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.


Assuntos
Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Células-Tronco Neurais , Neurogênese , RNA Longo não Codificante , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neurogênese/genética , Animais , Camundongos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Encéfalo/metabolismo , Encéfalo/embriologia , Humanos , Diferenciação Celular , Metilação de DNA , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proliferação de Células , Camundongos Endogâmicos C57BL , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Masculino , Éxons/genética , Neurônios/metabolismo , Ribonuclease III
9.
HLA ; 103(6): e15553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837619

RESUMO

HLA-C*06:364 differs from HLA-C*06:02:01:01 by a non-synonymous nucleotide substitution in exon 3.


Assuntos
Alelos , Éxons , Antígenos HLA-C , Humanos , Antígenos HLA-C/genética , Teste de Histocompatibilidade , Sequência de Bases , Análise de Sequência de DNA/métodos , Códon , Alinhamento de Sequência
11.
HLA ; 103(6): e15557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837671

RESUMO

The novel KIR2DL3*00112 allele differs from the closest allele KIR2DL3*00101 by a single same sense mutation.


Assuntos
Alelos , Éxons , Receptores KIR2DL3 , Humanos , Receptores KIR2DL3/genética , Sequência de Bases , Análise de Sequência de DNA/métodos , Teste de Histocompatibilidade , Polimorfismo de Nucleotídeo Único , Mutação Puntual , Alinhamento de Sequência
12.
HLA ; 103(6): e15551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837672

RESUMO

One nucleotide substitution in codon 130 of HLA-DQB1*03:03:02:01 results in a novel allele HLA-DQB1*03:96.


Assuntos
Alelos , Códon , Éxons , Cadeias beta de HLA-DQ , Teste de Histocompatibilidade , Humanos , Cadeias beta de HLA-DQ/genética , Taiwan , Sequência de Bases , Povo Asiático/genética , Análise de Sequência de DNA/métodos , Polimorfismo de Nucleotídeo Único
13.
BMJ Case Rep ; 17(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862189

RESUMO

We present a case of a child with congenital thrombotic thrombocytopenic purpura found to have a compound heterozygous variant in the ADAMTS13 gene with a novel variant resulting in a large duplication of exons 9-11 of ADAMTS13 This variant was identified through additional molecular testing via a chromosomal microarray analysis. To our knowledge, this assay had not previously been utilised to identify an ADAMTS13 variant and the additional testing was possible through the involvement of a genetic counsellor.


Assuntos
Proteína ADAMTS13 , Púrpura Trombocitopênica Trombótica , Humanos , Proteína ADAMTS13/genética , Púrpura Trombocitopênica Trombótica/genética , Púrpura Trombocitopênica Trombótica/diagnóstico , Análise em Microsséries/métodos , Duplicação Gênica , Masculino , Feminino , Éxons/genética , Proteínas ADAM/genética
14.
BMC Genomics ; 25(1): 594, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867172

RESUMO

BACKGROUND: Reverse transcription quantitative PCR (RT-qPCR) with intercalating dyes is one of the main techniques to assess gene expression levels used in basic and applied research as well as in diagnostics. However, primer design for RT-qPCR can be complex due to the high demands on primer quality. Primers are best placed on exon junctions, should avoid polymorphic regions, be specific to the target transcripts and also prevent genomic amplification accurately, among others. Current software tools manage to meet all the necessary criteria only insufficiently. Here, we present ExonSurfer, a novel, user-friendly web-tool for qPCR primer design. RESULTS: ExonSurfer combines the different steps of the primer design process, encompassing target selection, specificity and self-complementarity assessment, and the avoidance of issues arising from polymorphisms. Amplification of potentially contaminating genomic DNA is avoided by designing primers on exon-exon junctions, moreover, a genomic alignment is performed to filter the primers accordingly and inform the user of any predicted interaction. In order to test the whole performance of the application, we designed primer pairs for 26 targets and checked both primer efficiency, amplicon melting temperature and length and confirmed the targeted amplicon by Sanger sequencing. Most of the tested primers accurately and selectively amplified the corresponding targets. CONCLUSION: ExonSurfer offers a comprehensive end-to-end primer design, guaranteeing transcript-specific amplification. The user interface is intuitive, providing essential specificity and amplicon details. The tool can also be used by command line and the source code is available. Overall, we expect ExonSurfer to facilitate RT-qPCR set-up for researchers in many fields.


Assuntos
Primers do DNA , Éxons , Internet , Software , Primers do DNA/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
15.
BMC Genomics ; 25(1): 599, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877397

RESUMO

BACKGROUND: Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, ß- and γ-subfamilies, while α- and ß-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function. The aim of this research is to identify and characterize tubulins of an emerging biofuel crop Camelina sativa. RESULTS: We report comprehensive identification and characterization of tubulin gene family in C. sativa, including analyses of exon-intron organization, duplicated genes comparison, proper isotype designation, phylogenetic analysis, and expression patterns in different tissues. 17 α-, 34 ß- and 6 γ-tubulin genes were identified and assigned to a particular isotype. Recognition of orthologous tubulin isotypes was cross-referred, involving data of phylogeny, synteny analyses and genes allocation on reconstructed genomic blocks of Ancestral Crucifer Karyotype. An investigation of expression patterns of tubulin homeologs revealed the predominant role of N6 (A) and N7 (B) subgenomes in tubulin expression at various developmental stages, contrarily to general the dominance of transcripts of H7 (C) subgenome. CONCLUSIONS: For the first time a complete set of tubulin gene family members was identified and characterized for allohexaploid C. sativa species. The study demonstrates the comprehensive approach of precise inferring gene orthology. The applied technique allowed not only identifying C. sativa tubulin orthologs in model Arabidopsis species and tracking tubulin gene evolution, but also uncovered that A. thaliana is missing orthologs for several particular isotypes of α- and ß-tubulins.


Assuntos
Evolução Molecular , Genoma de Planta , Família Multigênica , Filogenia , Tubulina (Proteína) , Tubulina (Proteína)/genética , Brassicaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenia , Regulação da Expressão Gênica de Plantas , Duplicação Gênica , Íntrons/genética , Éxons/genética
17.
Invest Ophthalmol Vis Sci ; 65(6): 27, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38884552

RESUMO

Purpose: This study evaluated the dysregulation of TCF4 isoforms and differential exon usage (DEU) in corneal endothelial cells (CECs) of Fuchs endothelial corneal dystrophy (FECD) with or without trinucleotide repeat (TNR) expansion in the intron region of the TCF4 gene. Methods: Three RNA-Seq datasets of CECs (our own and two other previously published datasets) derived from non-FECD control and FECD subjects were analyzed to identify TCF4 isoforms and DEU events dysregulated in FECD by comparing control subjects to those with FECD with TNR expansion and FECD without TNR expansion. Results: Our RNA-Seq data demonstrated upregulation of three TCF4 isoforms and downregulation of two isoforms in FECD without TNR expansion compared to the controls. In FECD with TNR expansion, one isoform was upregulated and one isoform was downregulated compared to the control. Additional analysis using two other datasets identified that the TCF4-277 isoform was upregulated in common in all three datasets in FECD with TNR expansion, whereas no isoform was dysregulated in FECD without TNR expansion. DEU analysis showed that one exon (E174) upstream of the TNR, which only encompassed TCF4-277, was upregulated in common in all three datasets, whereas eight exons downstream of the TNR were downregulated in common in all three datasets in FECD with TNR expansion. Conclusions: This study identified TCF4-277 as a dysregulated isoform in FECD with TNR expansion, suggesting a potential contribution of TCF4-277 to FECD pathophysiology.


Assuntos
Endotélio Corneano , Distrofia Endotelial de Fuchs , Isoformas de Proteínas , Fator de Transcrição 4 , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Masculino , Feminino , Isoformas de Proteínas/genética , Idoso , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Expansão das Repetições de Trinucleotídeos/genética , Éxons/genética
18.
Sci Rep ; 14(1): 13069, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844820

RESUMO

Insertion mutations in exon 20 of the epidermal growth factor receptor gene (EGFR exon20ins) are rare, heterogeneous alterations observed in non-small cell lung cancer (NSCLC). With a few exceptions, they are associated with primary resistance to established EGFR tyrosine kinase inhibitors (TKIs). As patients carrying EGFR exon20ins may be eligible for treatment with novel therapeutics-the bispecific antibody amivantamab, the TKI mobocertinib, or potential future innovations-they need to be identified reliably in clinical practice for which quality-based routine genetic testing is crucial. Spearheaded by the German Quality Assurance Initiative Pathology two international proficiency tests were run, assessing the performance of 104 participating institutes detecting EGFR exon20ins in tissue and/or plasma samples. EGFR exon20ins were most reliably identified using next-generation sequencing (NGS). Interestingly, success rates of institutes using commercially available mutation-/allele-specific quantitative (q)PCR were below 30% for tissue samples and 0% for plasma samples. Most of these mutation-/allele-specific (q)PCR assays are not designed to detect the whole spectrum of EGFR exon20ins mutations leading to false negative results. These data suggest that NGS is a suitable method to detect EGFR exon20ins in various types of patient samples and is superior to the detection spectrum of commercially available assays.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Ensaio de Proficiência Laboratorial , Anticorpos Biespecíficos/uso terapêutico , Mutagênese Insercional , Inibidores de Proteínas Quinases/uso terapêutico
19.
Mol Neurodegener ; 19(1): 45, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853250

RESUMO

BACKGROUND: Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS: We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS: Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS: Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.


Assuntos
Proteínas de Ligação a DNA , Éxons , Humanos , Éxons/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Neurônios/metabolismo , Encéfalo/metabolismo , Splicing de RNA/genética , Núcleo Celular/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...