Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55.186
Filtrar
1.
Sci Total Environ ; 926: 172114, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38561127

RESUMO

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Assuntos
Lactobacillales , Silagem , Silagem/análise , Silagem/microbiologia , Zea mays/microbiologia , Lactobacillales/genética , Antibacterianos , Temperatura , Fermentação
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581217

RESUMO

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Assuntos
Acidose , Doenças dos Ovinos , Masculino , Feminino , Animais , Ovinos , Leite/metabolismo , Mastigação/fisiologia , Amido/metabolismo , Lactação/fisiologia , Detergentes/metabolismo , Silagem/análise , Propionatos/metabolismo , Fermentação , Rúmen/metabolismo , Fibras na Dieta/metabolismo , Carboidratos da Dieta/metabolismo , Dieta/veterinária , Nutrientes , Acetatos/metabolismo , Acidose/veterinária , Digestão/fisiologia
3.
Curr Microbiol ; 81(6): 140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622481

RESUMO

Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as ß-glucosidase. ß-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. ß-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of ß-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of ß-glucosidase with 41.95 U/g of rice husk.


Assuntos
Aspergillus , Oryza , beta-Glucosidase , Fermentação , Solventes , Acetatos
4.
Microb Cell Fact ; 23(1): 111, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622625

RESUMO

BACKGROUND: Ascomycetous budding yeasts are ubiquitous environmental microorganisms important in food production and medicine. Due to recent intensive genomic research, the taxonomy of yeast is becoming more organized based on the identification of monophyletic taxa. This includes genera important to humans, such as Kazachstania. Until now, Kazachstania humilis (previously Candida humilis) was regarded as a sourdough-specific yeast. In addition, any antibacterial activity has not been associated with this species. RESULTS: Previously, we isolated a yeast strain that impaired bio-hydrogen production in a dark fermentation bioreactor and inhibited the growth of Gram-positive and Gram-negative bacteria. Here, using next generation sequencing technologies, we sequenced the genome of this strain named K. humilis MAW1. This is the first genome of a K. humilis isolate not originating from a fermented food. We used novel phylogenetic approach employing the 18 S-ITS-D1-D2 region to show the placement of the K. humilis MAW1 among other members of the Kazachstania genus. This strain was examined by global phenotypic profiling, including carbon sources utilized and the influence of stress conditions on growth. Using the well-recognized bacterial model Escherichia coli AB1157, we show that K. humilis MAW1 cultivated in an acidic medium inhibits bacterial growth by the disturbance of cell division, manifested by filament formation. To gain a greater understanding of the inhibitory effect of K. humilis MAW1, we selected 23 yeast proteins with recognized toxic activity against bacteria and used them for Blast searches of the K. humilis MAW1 genome assembly. The resulting panel of genes present in the K. humilis MAW1 genome included those encoding the 1,3-ß-glucan glycosidase and the 1,3-ß-glucan synthesis inhibitor that might disturb the bacterial cell envelope structures. CONCLUSIONS: We characterized a non-sourdough-derived strain of K. humilis, including its genome sequence and physiological aspects. The MAW1, together with other K. humilis strains, shows the new organization of the mating-type locus. The revealed here pH-dependent ability to inhibit bacterial growth has not been previously recognized in this species. Our study contributes to the building of genome sequence-based classification systems; better understanding of K.humilis as a cell factory in fermentation processes and exploring bacteria-yeast interactions in microbial communities.


Assuntos
Antibacterianos , Saccharomycetales , Humanos , Filogenia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Saccharomycetales/genética , Leveduras/metabolismo , Fermentação
5.
J Agric Food Chem ; 72(15): 8664-8673, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564669

RESUMO

Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of ß-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of ß-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.


Assuntos
Vitamina A , Yarrowia , Humanos , Vitamina A/metabolismo , Fermentação , Yarrowia/genética , Yarrowia/metabolismo , Reatores Biológicos , beta Caroteno/metabolismo , Redes e Vias Metabólicas , Engenharia Metabólica
6.
J Agric Food Chem ; 72(15): 8749-8759, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579123

RESUMO

The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.


Assuntos
Produtos da Carne , Simbiose , Ésteres , Fermentação , Ácidos , Produtos da Carne/análise , Indóis
7.
Microb Biotechnol ; 17(4): e14449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593329

RESUMO

Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.


Assuntos
Bacillus coagulans , Alimento Funcional , Materiais Biocompatíveis/metabolismo , Bacillus coagulans/metabolismo , Fermentação , Biotecnologia
8.
World J Microbiol Biotechnol ; 40(5): 155, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581587

RESUMO

The study aims to enhance ethanol production by Wickerhamomyces subpelliculosus ZE75 isolated from marine sediment. In addition, analyzing the kinetic parameters of ethanol production and optimization of the fermentation conditions was performed. The marine yeast isolate ZE75 was selected as the front runner ethanol-producer, with an ethanol yield of 89.77 gL-1. ZE75 was identified relying on the phenotypic and genotypic characteristics of W. subpelliculosus. The genotypic characterization based on the Internal Transcribed Spacer (ITS) sequence was deposited in the GenBank database with the accession number OP715873. The maximum specific ethanol production rate (vmax) was 0.482 gg-1 h-1 at 175 gL-1 glucose concentration, with a high accuracy of R2 0.95. The maximum growth specific rates (µmax) were 0.141 h-1 obtained at 150 gL-1 glucose concentration with R2 0.91. Optimization of the fermentation parameters such as pH and salinity has been achieved. The highest ethanol yield 0.5637 gg-1 was achieved in a 100% natural seawater-based medium. The maximum ethanol production of 104.04 gL-1 was achieved at pH 4.5 with a specific ethanol rate of 0.1669 gg-1 h-1. The findings of the present study recommend the possibility of ethanol production from a seawater-based medium on a large scale using W. subpelliculosus ZE75.


Assuntos
Etanol , Saccharomycetales , Leveduras , Fermentação , Glucose
9.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582825

RESUMO

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Assuntos
Streptomyces , Fermentação , Streptomyces/genética , Aminoglicosídeos , Antibacterianos , Meios de Cultura
10.
Fungal Biol ; 128(2): 1657-1663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575238

RESUMO

Xylitol is an increasingly popular functional food additive, and the newly isolated yeast Wickerhamomyces anomalus WA has shown extensive substrate utilization capability, with the ability to grow on hexose (d-galactose, d-glucose, d-mannose, l-fructose, and d-sorbose) and pentose (d-xylose and l-arabinose) substrates, as well as high tolerance to xylose at concentrations of up to 300 g/L. Optimal xylitol fermentation conditions were achieved at 32 °C, 140 rpm, pH 5.0, and initial cell concentration OD600 of 2.0, with YP (yeast extract 10 g/L, peptone 20 g/L) as the optimal nitrogen source. Xylitol yield increased from 0.61 g/g to 0.91 g/g with an increase in initial substrate concentration from 20 g/L to 180 g/L. Additionally, 20 g/L glycerol was found to be the optimal co-substrate for xylitol fermentation, resulting in an increase in xylitol yield from 0.82 g/g to 0.94 g/g at 140 rpm, enabling complete conversion of xylose to xylitol.


Assuntos
Saccharomycetales , Xilitol , Fermentação , Xilose , Glucose
11.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581087

RESUMO

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Assuntos
Álcool Feniletílico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Álcool Feniletílico/metabolismo , Multiômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação
12.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581093

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Peso Molecular , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Genômica , Fermentação
13.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611814

RESUMO

Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.


Assuntos
Musa , Amido Resistente , Fibras na Dieta , Antioxidantes , Fermentação , Austrália , Fenóis , Digestão
14.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611934

RESUMO

Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiperazine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have garnered significant attention in the fields of biology and pharmacology. The investigation into the pharmacological potential of this class of alkaloids has unveiled promising applications in drug discovery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strategies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based on the formation mechanism of the spiro-C atom.


Assuntos
Alcaloides , Fermentação , Aspergillus fumigatus , Descoberta de Drogas
15.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611942

RESUMO

OBJECTIVE: To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS: Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS: Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS: The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.


Assuntos
Furaldeído/análogos & derivados , Gastrodia , Genisteína , Cromatografia Líquida de Alta Pressão , Fermentação , Pós , Adenosina , Ergosterol , Guanosina , Uracila
16.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611957

RESUMO

This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m3 d, 0.049 kg/m3 d, and 0.045 kg/m3 d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m3 d.


Assuntos
Bactérias , Hidrogênio , Fermentação , Biomassa
17.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613030

RESUMO

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Assuntos
Camellia sinensis , Hiperlipidemias , Humanos , Chá , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/prevenção & controle , Fermentação , Ácidos e Sais Biliares
18.
J Texture Stud ; 55(2): e12831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613314

RESUMO

To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.


Assuntos
Pão , Amido , Hidrólise , Fermentação , Amido Resistente , Digestão
19.
Carbohydr Polym ; 335: 122087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616077

RESUMO

The aim of this study was to evaluate the impacts of enzymatically synthesized α-glucans possessing α-1,4- and α-1,6-glucose linkages, and varying in branching ratio, on colonic microbiota composition and metabolic function. Four different α-glucans varying in branching ratio were synthesized by amylosucrase from Neisseria polysaccharea and glycogen branching enzyme from Rhodothermus obamensis. The branching ratios were found to range from 0 % to 2.8 % using GC/MS. In vitro fecal fermentation analyses (n = 8) revealed that the branching ratio dictates the short-chain fatty acid (SCFA) generation by fecal microbiota. Specifically, slightly branched (0.49 %) α-glucan resulted in generation of significantly (P < 0.05) higher amounts of propionate, compared to more-branched counterparts. In addition, the amount of butyrate generated from this α-glucan was statistically (P > 0.05) indistinguishable than those observed in resistant starches. 16S rRNA sequencing revealed that enzymatically synthesized α-glucans stimulated Lachnospiraceae and Ruminococcus related OTUs. Overall, the results demonstrated metabolic function of colonic microbiota can be manipulated by altering the branching ratio of enzymatically synthesized α-glucans, providing insights into specific structure-function relationships between dietary fibers and the colonic microbiome. Furthermore, the slightly branched α-glucans could be used as functional carbohydrates to stimulate the beneficial microbiota and SCFAs in the colon.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Microbiota , Fermentação , RNA Ribossômico 16S/genética , Glucanos
20.
Carbohydr Polym ; 335: 122078, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616098

RESUMO

Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.


Assuntos
Antibacterianos , Antioxidantes , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Transporte Biológico , Fermentação , Alimento Funcional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...