Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.725
Filtrar
1.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955226

RESUMO

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Assuntos
Evolução Biológica , Aves , Plumas , Fósseis , Muda , Animais , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , Aves/fisiologia , Aves/anatomia & histologia , Muda/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Voo Animal , China , Asas de Animais/anatomia & histologia
2.
J R Soc Interface ; 21(216): 20230593, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981517

RESUMO

Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.


Assuntos
Quirópteros , Voo Animal , Modelos Biológicos , Músculo Esquelético , Asas de Animais , Animais , Quirópteros/fisiologia , Quirópteros/anatomia & histologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Fenômenos Biomecânicos , Fenômenos Fisiológicos da Pele
3.
Bioinspir Biomim ; 19(5)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955342

RESUMO

This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratioJfrom 0 (hovering) to 1.0. The study reveals that the LE curvature has insignificant influence on the cycle-average aerodynamic lift and drag. However, the time-history lift coefficient shows that the curvature can enhance the lift around the middle of downstroke. This enhanced lift is reduced from 5% to 1.2% asJchanged from 0 to 1.0. Further flow examinations reveal that the LE curvature is beneficial by enhancing circulation only at the outboard wing sections. The enhanced outboard circulation is found to emanate from the less stretched leading-edge vortices (LEVs), weakened trailing-edge vortices (TEVs), and the coherent merging of the tip vortices (TVs) with the minor LEVs as observed from the phase-lock planar digital particle image velocimetry measurements. The far-wake observation shows that the LE curvature enhances the vorticity within the TV, helping to reduce the overall flow fluctuations in the far field. These findings can be extended to explain the predominantly straight LE wing shape with a small amount of curvature only observed near the wing tip for flapping fliers with Re from 103to 104.


Assuntos
Simulação por Computador , Voo Animal , Modelos Biológicos , Robótica , Asas de Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Animais , Robótica/métodos , Biomimética/métodos , Fenômenos Biomecânicos , Reologia/métodos , Desenho de Equipamento
4.
J R Soc Interface ; 21(216): 20230746, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013419

RESUMO

Navigation of male moths towards females during the mating search offers a unique perspective on the exploration-exploitation (EE) model in decision-making. This study uses the EE model to explain male moth pheromone-driven flight paths. Wind tunnel measurements and three-dimensional tracking using infrared cameras have been leveraged to gain insights into male moth behaviour. During the experiments in the wind tunnel, disturbance to the airflow has been added and the effect of increased fluctuations on moth flights has been analysed, in the context of the proposed EE model. The exploration and exploitation phases are separated using a genetic algorithm to the experimentally obtained dataset of moth three-dimensional trajectories. First, the exploration-to-exploitation rate (EER) increases with distance from the source of the female pheromone is demonstrated, which can be explained in the context of the EE model. Furthermore, our findings reveal a compelling relationship between EER and increased flow fluctuations near the pheromone source. Using an olfactory navigation simulation and our moth-inspired navigation model, the phenomenon where male moths exhibit an enhanced EER as turbulence levels increase is explained. This research extends our understanding of optimal navigation strategies based on general biological EE models and supports the development of bioinspired navigation algorithms.


Assuntos
Voo Animal , Modelos Biológicos , Mariposas , Animais , Masculino , Mariposas/fisiologia , Feminino , Voo Animal/fisiologia , Olfato/fisiologia , Navegação Espacial/fisiologia , Comportamento Sexual Animal/fisiologia , Atrativos Sexuais
5.
PeerJ ; 12: e17524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035160

RESUMO

Pterosaurs were the first powered flying vertebrates, with a fossil record that stretches back to about 230 million years before present. Most species are only known from one to three specimens, which are most often fragmentary. However, Rhamphorhynchus muensteri is known from numerous excellent specimens, including multiple specimens with soft tissue preservation. As such, Rhamphorhynchus muensteri is one of the only pterosaurs amenable to analysis for intraspecific variation. It has been previously predicted that elements directly involved in the flight apparatus, such as those of the forelimb, will be more highly constrained in their proportions than other parts of the skeleton. We investigated the degree of variation seen in elements and body parts of Rhamphorhynchus, which represents the best model system among pterosaurs for testing these expectations of intraspecific variation. We recover evidence for high levels of constraint throughout the appendicular and axial elements (head, neck, torso, tail, forelimbs, hindlimbs), suggesting that all were important for flight. We further find that tail variation increases among the largest specimens, suggesting reduced constraint and/or stronger sexual selection on the tail in more mature individuals.


Assuntos
Voo Animal , Fósseis , Animais , Voo Animal/fisiologia , Dinossauros/anatomia & histologia , Membro Anterior/anatomia & histologia , Cauda/anatomia & histologia , Evolução Biológica , Comportamento Sexual Animal/fisiologia
6.
Laterality ; 29(3): 313-330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38979561

RESUMO

The brain's sensory lateralization involves the processing of information from the sensory organs primarily in one hemisphere. This can improve brain efficiency by reducing interference and duplication of neural circuits. For species that rely on successful interaction among family partners, such as geese, lateralization can be advantageous. However, at the group level, one-sided biases in sensory lateralization can make individuals predictable to competitors and predators. We investigated lateral preferences in the positioning of pair mates of Greater white-fronted geese Anser albifrons albifrons. Using GPS-GSM trackers, we monitored individual geese in flight throughout the year. Our findings indicate that geese exhibit individual lateral biases when viewing their mate in flight, but the direction of these biases varies among individuals. We suggest that these patterns of visual lateralization could be an adaptive trait for the species with long-term social monogamy, high levels of interspecies communication and competition, and high levels of predator and hunting pressure.


Assuntos
Voo Animal , Lateralidade Funcional , Gansos , Animais , Lateralidade Funcional/fisiologia , Gansos/fisiologia , Voo Animal/fisiologia , Masculino , Feminino , Percepção Visual/fisiologia , Comportamento Sexual Animal/fisiologia
7.
PLoS One ; 19(7): e0305084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976706

RESUMO

To understand the locomotory mechanisms of flying and swimming animals, it is often necessary to develop assays that enable us to measure their responses to external gust perturbations. Typically, such measurements have been carried out using a variety of gusts which are difficult to control or characterize owing to their inherently turbulent nature. Here, we present a method of generating discrete gusts under controlled laboratory conditions in the form of a vortex rings which are well-characterized and highly controllable. We also provide the theoretical guidelines underlying the design of gust generators for specific applications. As a case study, we tested the efficacy of this method to study the flight response of freely-flying soldier flies Hermetia illucens. The vortex ring based method can be used to generate controlled gusts to study diverse phenomena ranging from a natural flight in insects to the artificial flight of insect-sized drones and micro-aerial vehicles.


Assuntos
Voo Animal , Animais , Voo Animal/fisiologia , Dípteros/fisiologia , Natação/fisiologia
8.
Proc Biol Sci ; 291(2027): 20240875, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016113

RESUMO

During spring migration, nocturnal migrants attempt to minimize their travel time to reach their breeding grounds early. However, how they behave and respond to unfavourable conditions during their springtime travels is much less understood. In this study, we reveal the effects of atmospheric factors on nocturnal bird migration under adverse conditions during spring and autumn, based on one of the most detailed bird migration studies globally, using radar data from 13 deployments over a period of seven years (2014-2020) in the Levant region. Using ERA5 reanalysis data, we found that migratory birds maintain similar ground speeds in both autumn and spring migrations, but during spring, when encountering unfavourable winds, they put more effort into maintaining their travel speed by increasing self-powered airspeed by 18%. Moreover, we report for the first time that spring migrants showed less selectivity to wind conditions and migrated even under unfavourable headwind and crosswind conditions. Interestingly, we discovered that temperature was the most important weather parameter, such that warm weather substantially increased migration intensities in both seasons. Our results enhance our understanding of bird migration over the Levant region, one of the world's largest and most important migration flyways, and the factors controlling it. This information is essential for predicting bird migration, which-especially under the ongoing anthropogenic changes-is of high importance.


Assuntos
Migração Animal , Estações do Ano , Aves Canoras , Vento , Animais , Aves Canoras/fisiologia , Voo Animal
9.
J R Soc Interface ; 21(216): 20240076, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016178

RESUMO

Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.


Assuntos
Voo Animal , Asas de Animais , Animais , Voo Animal/fisiologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Fenômenos Biomecânicos , Dípteros/fisiologia , Modelos Biológicos
10.
Curr Biol ; 34(12): R564-R565, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889675

RESUMO

Painted ladies are well-known migratory butterflies, but confirmation of the details of their swarming flights through Europe has evaded scientists until now. It was their role as pollinators, carrying pollen grains on their flights, that helped unlock the secrets of their migrations.


Assuntos
Migração Animal , Borboletas , Pólen , Polinização , Animais , Borboletas/fisiologia , Migração Animal/fisiologia , Europa (Continente) , Voo Animal/fisiologia
11.
Vet Rec ; 194(12): 462-463, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38874135

RESUMO

Georgina Mills discusses new research looking at how hummingbirds use somatosensation to adjust their flight.


Assuntos
Aves , Voo Animal , Tato , Animais
12.
Ecol Evol Physiol ; 97(3): 144-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875138

RESUMO

AbstractThe common eastern bumble bee (Bombus impatiens) queens endure cold winter months by entering a diapause state. During this overwintering period, these animals use stored energy reserves while maintaining a low metabolic rate. This study investigates changes in the metabolic rate of bumble bee queens during diapause-like laboratory conditions and the potential reorganization of the flight muscle metabolic properties during this period. We first confirmed the hypometabolic state of queens during diapause in the laboratory, which lowered their resting metabolic rate to less than 5% of normal resting values. Body mass decreased during diapause, body composition changed where carbohydrates decreased initially, and later protein declined, with a similar trend for lipid content. Using cellular respirometry, we determined the capacity of the flight muscle cells of bumble bee queens to use various metabolic fuels and whether this capacity changes during the progression of diapause to favor stored lipid-derived substrates. Queens showed a low capacity to oxidize the amino acid proline, compared with workers, and their capacity to oxidize all metabolic substrates did not change during a 4-mo diapause period in the laboratory. We also show no detectable ability to oxidize fatty acid by flight muscle mitochondria in this species. The metabolic properties of flight muscle tissue were further characterized using metabolic enzyme activity profiles showing little change during diapause, indicating that profound metabolic suppression is induced without major changes in muscle metabolic phenotypes. Overall, B. impatiens queens undergo diapause while maintaining flight muscle capacity under the conditions used.


Assuntos
Voo Animal , Animais , Abelhas/fisiologia , Feminino , Voo Animal/fisiologia , Diapausa de Inseto/fisiologia , Músculos/metabolismo , Metabolismo Energético/fisiologia , Metabolismo Basal/fisiologia , Composição Corporal/fisiologia
13.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38873724

RESUMO

Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.


Assuntos
Regulação da Temperatura Corporal , Voo Animal , Larva , Manduca , Oxigênio , Animais , Manduca/fisiologia , Manduca/crescimento & desenvolvimento , Voo Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Oxigênio/metabolismo , Larva/fisiologia , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
14.
Nat Commun ; 15(1): 5205, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918383

RESUMO

The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.


Assuntos
Borboletas , Voo Animal , Animais , Borboletas/fisiologia , Voo Animal/fisiologia , Vento , Ecossistema , América do Sul , Europa (Continente) , Migração Animal/fisiologia , Pólen , África , Distribuição Animal
15.
Proc Natl Acad Sci U S A ; 121(26): e2319971121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885375

RESUMO

Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks-the V and echelon formations of large birds-may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder, J. Exp. Biol. 226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2 production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects.


Assuntos
Metabolismo Energético , Voo Animal , Estorninhos , Animais , Voo Animal/fisiologia , Metabolismo Energético/fisiologia , Estorninhos/fisiologia , Estorninhos/metabolismo , Aves/fisiologia
16.
Sci Rep ; 14(1): 14859, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937519

RESUMO

The spread of invasive species often follows a jump-dispersal pattern. While jumps are typically fostered by humans, local dispersal can occur due to the specific traits of a species, which are often poorly understood. This holds true for small hive beetles (Aethina tumida), which are parasites of social bee colonies native to sub-Saharan Africa. They have become a widespread invasive species. In 2017, a mark-release-recapture experiment was conducted in six replicates (A-F) using laboratory reared, dye-fed adults (N = 15,690). Honey bee colonies were used to attract flying small hive beetles at fixed spatial intervals from a central release point. Small hive beetles were recaptured (N = 770) at a maximum distance of 3.2 km after 24 h and 12 km after 1 week. Most small hive beetles were collected closest to the release point at 0 m (76%, replicate A) and 50 m (52%, replicates B to F). Temperature and wind deviation had significant effects on dispersal, with more small hive beetles being recaptured when temperatures were high (GLMM: slope = 0.99, SE = 0.17, Z = 5.72, P < 0.001) and confirming the role of wind for odour modulated dispersal of flying insects (GLMM: slope = - 0.39, SE = 0.14, Z = - 2.90, P = 0.004). Our findings show that the small hive beetles is capable of long-distance flights, and highlights the need to understand species specific traits to be considered for monitoring and mitigation efforts regarding invasive alien species.


Assuntos
Besouros , Voo Animal , Espécies Introduzidas , Animais , Besouros/fisiologia , Voo Animal/fisiologia , Distribuição Animal , Abelhas/fisiologia , Temperatura , Vento
17.
Nature ; 630(8017): 565-566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867009
18.
Proc Biol Sci ; 291(2024): 20232831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864145

RESUMO

In autumn 1950 David and Elizabeth Lack chanced upon a huge migration of insects and birds flying through the Pyrenean Pass of Bujaruelo, from France into Spain, later describing the spectacle as combining both grandeur and novelty. The intervening years have seen many changes to land use and climate, posing the question as to the current status of this migratory phenomenon. In addition, a lack of quantitative data has prevented insights into the ecological impact of this mass insect migration and the factors that may influence it. To address this, we revisited the site in autumn over a 4 year period and systematically monitored abundance and species composition of diurnal insect migrants. We estimate an annual mean of 17.1 million day-flying insect migrants from five orders (Diptera, Hymenoptera, Hemiptera, Lepidoptera and Odonata) moving south, with observations of southward 'mass migration' events associated with warmer temperatures, the presence of a headwind, sunlight, low windspeed and low rainfall. Diptera dominated the migratory assemblage, and annual numbers varied by more than fourfold. Numbers at this single site hint at the likely billions of insects crossing the entire Pyrenean mountain range each year, and we highlight the importance of this route for seasonal insect migrants.


Assuntos
Migração Animal , Insetos , Animais , Espanha , Insetos/fisiologia , França , Voo Animal , Estações do Ano
19.
Proc Biol Sci ; 291(2024): 20240311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864337

RESUMO

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.


Assuntos
Drosophila melanogaster , Voo Animal , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Cabeça/anatomia & histologia , Mecanorreceptores/fisiologia , Movimentos da Cabeça/fisiologia , Sensilas/fisiologia , Fenômenos Biomecânicos
20.
Sci Rep ; 14(1): 13496, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866865

RESUMO

Estimating population changes of bats is important for their conservation. Population estimates of hibernating bats are often calculated by researchers entering hibernacula to count bats; however, the disturbance caused by these surveys can cause bats to arouse unnaturally, fly, and lose body mass. We conducted 17 hibernacula surveys in 9 caves from 2013 to 2018 and used acoustic detectors to document cave-exiting bats the night following our surveys. We predicted that cave-exiting flights (i.e., bats flying out and then back into caves) of Townsend's big-eared bats (Corynorhinus townsendii) and western small-footed myotis (Myotis ciliolabrum) would be higher the night following hibernacula surveys than on nights following no surveys. Those two species, however, did not fly out of caves more than predicted the night following 82% of surveys. Nonetheless, the activity of bats flying out of caves following surveys was related to a disturbance factor (i.e., number of researchers × total time in a cave). We produced a parsimonious model for predicting the probability of Townsend's big-eared bats flying out of caves as a function of disturbance factor and ambient temperature. That model can be used to help biologists plan for the number of researchers, and the length of time those individuals are in a cave to minimize disturbing bats.


Assuntos
Cavernas , Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Voo Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA