Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.257
Filtrar
1.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967406

RESUMO

Introduction. Cold plasma is frequently utilized for the purpose of eliminating microbial contaminants. Under optimal conditions, it can function as plasma medicine for treating various diseases, including infections caused by Candida albicans, an opportunistic pathogen that can overgrow in individuals with weakened immune system.Gap Statement. To date, there has been less molecular study on cold plasma-treated C. albicans.Research Aim. The study aims to fill the gap in understanding the molecular response of C. albicans to cold plasma treatment.Methodology. This project involved testing a cold plasma generator to determine its antimicrobial effectiveness on C. albicans' planktonic cells. Additionally, the cells' transcriptomics responses were investigated using RNA sequencing at various treatment durations (1, 3 and 5 min).Results. The results show that our cold plasma effectively eliminates C. albicans. Cold plasma treatment resulted in substantial downregulation of important pathways, such as 'nucleotide metabolism', 'DNA replication and repair', 'cell growth', 'carbohydrate metabolism' and 'amino acid metabolism'. This was an indication of cell cycle arrest of C. albicans to preserve energy consumption under unfavourable conditions. Nevertheless, C. albicans adapted its GSH antioxidant system to cope with the oxidative stress induced by reactive oxygen species, reactive nitrogen species and other free radicals. The treatment likely led to a decrease in cell pathogenicity as many virulence factors were downregulated.Conclusion. The study demonstrated the major affected pathways in cold plasma-treated C. albicans, providing valuable insights into the molecular response of C. albicans to cold plasma treatment. The findings contribute to the understanding of the antimicrobial efficiency of cold plasma and its potential applications in the field of microbiology.


Assuntos
Candida albicans , Perfilação da Expressão Gênica , Gases em Plasma , Candida albicans/genética , Candida albicans/efeitos dos fármacos , Gases em Plasma/farmacologia , Plâncton/genética , Transcriptoma , Estresse Oxidativo , Regulação Fúngica da Expressão Gênica , Espécies Reativas de Oxigênio/metabolismo , Humanos
2.
Mol Biol Rep ; 51(1): 834, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042272

RESUMO

Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.


Assuntos
Neoplasias Ovarianas , Gases em Plasma , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Feminino , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000064

RESUMO

Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.


Assuntos
Apoptose , Neoplasias Ósseas , Proliferação de Células , Sobrevivência Celular , Condrossarcoma , Doxorrubicina , Gases em Plasma , Condrossarcoma/tratamento farmacológico , Condrossarcoma/patologia , Humanos , Gases em Plasma/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Vincristina/farmacologia , Terapia Combinada
4.
Skin Res Technol ; 30(7): e13850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979986

RESUMO

BACKGROUND: Current treatment options for Malassezia folliculitis (MF) are limited. Recent research has demonstrated the inhibitory effect of cold atmospheric plasma (CAP) on the growth of Malassezia pachydermatis in vitro, suggesting CAP as a potential therapeutic approach for managing MF. OBJECTIVES: The objective of our study is to assess the in vitro antifungal susceptibility of Malassezia yeasts to CAP. Additionally, we aim to evaluate the efficacy and tolerability of CAP in treating patients with MF. METHODS: We initially studied the antifungal effect of CAP on planktonic and biofilm forms of Malassezia yeasts, using well-established techniques such as zone of inhibition, transmission electron microscopy, colony count assay and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Subsequently, a randomized (1:1 ratio), active comparator-controlled, observer-blind study was conducted comparing daily CAP therapy versus itraconazole 200 mg/day for 2 weeks in 50 patients with MF. Efficacy outcomes were measured by success rate, negative microscopy rate and changes in Dermatology Life Quality Index (DLQI) and Global Aesthetic Improvement Scale (GAIS) scores. Safety was assessed by monitoring adverse events (AEs) and local tolerability. RESULTS: In laboratory investigations, CAP time-dependently inhibited the growth of Malassezia yeasts in both planktonic and biofilm forms. Forty-nine patients completed the clinical study. At week 2, success was achieved by 40.0% of subjects in the CAP group versus 58.3% in the itraconazole group (p = 0.199). The negative direct microscopy rates of follicular samples were 56.0% in the CAP group versus 66.7% in the itraconazole group (p = 0.444). No significant differences were found in the proportion of subjects achieving DLQI scores of 0/1 (p = 0.456) or in the GAIS responder rates (p = 0.588) between the two groups. Three patients in the CAP group and one patient in the itraconazole group reported mild AEs. CONCLUSION: CAP demonstrated significant antifungal activity against Malassezia yeasts in vitro and exhibited comparable efficacy to itraconazole in treating MF patients. Without the associated adverse effects of oral antifungal drugs, CAP can be considered a promising and safe treatment modality for MF.


Assuntos
Antifúngicos , Dermatomicoses , Foliculite , Malassezia , Gases em Plasma , Malassezia/efeitos dos fármacos , Humanos , Foliculite/tratamento farmacológico , Foliculite/microbiologia , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , Itraconazol/uso terapêutico , Itraconazol/farmacologia , Adulto Jovem , Resultado do Tratamento , Biofilmes/efeitos dos fármacos
5.
Sci Rep ; 14(1): 15930, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987305

RESUMO

The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.


Assuntos
Gases em Plasma , Gases em Plasma/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
6.
Theriogenology ; 226: 308-318, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959841

RESUMO

Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.


Assuntos
MicroRNAs , Espécies Reativas de Oxigênio , Espermatozoides , Animais , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos/fisiologia , Análise do Sêmen/veterinária , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/fisiologia , Preservação do Sêmen/veterinária
7.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985505

RESUMO

Introduction. Aspergillus flavus and Fusarium keratoplasticum are common causative pathogens of fungal keratitis (FK), a severe corneal disease associated with significant morbidity and vision loss. Escalating incidence of antifungal resistance to available antifungal drugs poses a major challenge to FK treatment. Cold atmospheric plasma (CAP) is a pioneering nonpharmacologic antimicrobial intervention that has demonstrated potential as a broad-spectrum antifungal treatment.Gap statement. Previous research highlights biofilm-associated resistance as a critical barrier to effective FK treatment. Although CAP has shown promise against various fungal infections, its efficacy against biofilm and conidial forms of FK pathogens remains inadequately explored.Aim. This study aims to investigate the antifungal efficacy of CAP against clinical fungal keratitis isolates of A. flavus and F. keratoplasticum in vitro.Methodology. Power parameters (22-27 kVpp, 300-400 Hz and 20-80 mA) of a dielectric barrier discharge CAP device were optimized for inactivation of A. flavus biofilms. Optimal applied voltage and total current were applied to F. keratoplasticum biofilms and conidial suspensions of A. flavus and F. keratoplasticum. The antifungal effect of CAP treatment was investigated by evaluating fungal viability through means of metabolic activity, c.f.u. enumeration (c.f.u. ml-1) and biofilm formation.Results. For both fungal species, CAP exhibited strong time-dependent inactivation, achieving greater than 80 % reduction in metabolic activity and c.f.u. ml-1 within 300 s or less, and complete inhibition after 600 s of treatment.Conclusion. Our findings indicate that CAP is a promising broad-spectrum antifungal intervention. CAP treatment effectively reduces fungal viability in both biofilm and conidial suspension cultures of A. flavus and F. keratoplasticum, suggesting its potential as an alternative treatment strategy for fungal keratitis.


Assuntos
Antifúngicos , Aspergillus flavus , Biofilmes , Fusarium , Ceratite , Gases em Plasma , Esporos Fúngicos , Aspergillus flavus/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Gases em Plasma/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Antifúngicos/farmacologia , Ceratite/microbiologia , Infecções Oculares Fúngicas/microbiologia , Humanos , Fusariose/microbiologia , Viabilidade Microbiana/efeitos dos fármacos
8.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892174

RESUMO

Foodborne diseases can be attributed not only to contamination with bacterial or fungal pathogens but also their associated toxins. Thus, to maintain food safety, innovative decontamination techniques for toxins are required. We previously demonstrated that an atmospheric-pressure dielectric-barrier discharge (APDBD) plasma generated by a roller conveyer plasma device is effective at inactivating bacteria and fungi in foods. Here, we have further examined whether the roller conveyer plasma device can be used to degrade toxins produced by foodborne bacterial pathogens, including aflatoxin, Shiga toxins (Stx1 and Stx2), enterotoxin B and cereulide. Each toxin was spotted onto an aluminum plate, allowed to dry, and then treated with APDBD plasma applied by the roller conveyer plasma device for different time periods. Assessments were conducted using a competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrate a significant time-dependent decrease in the levels of these toxins. ELISA showed that aflatoxin B1 concentrations were reduced from 308.6 µg/mL to 74.4 µg/mL within 1 min. For Shiga toxins, Stx1 decreased from 913.8 µg/mL to 65.1 µg/mL, and Stx2 from 2309.0 µg/mL to 187.6 µg/mL within the same time frame (1 min). Enterotoxin B levels dropped from 62.67 µg/mL to 1.74 µg/mL at 15 min, and 1.43 µg/mL at 30 min, but did not display a significant decrease within 5 min. LC-MS/MS analysis verified that cereulide was reduced to below the detection limit following 30 min of APDBD plasma treatment. Taken together, these findings highlight that a range of foodborne toxins can be degraded by a relatively short exposure to plasma generated by an APDBD using a roller conveyer device. This technology offers promising advancements in food safety, providing a novel method to alleviate toxin contamination in the food processing industry.


Assuntos
Pressão Atmosférica , Espectrometria de Massas em Tandem , Enterotoxinas , Depsipeptídeos/química , Microbiologia de Alimentos/métodos , Cromatografia Líquida/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Ensaio de Imunoadsorção Enzimática , Contaminação de Alimentos/análise , Gases em Plasma/química , Aflatoxina B1
9.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892350

RESUMO

Periodontitis is an inflammatory disease caused by Porphyromonas gingivalis (P. gingivalis) in the oral cavity. This periodontal disease causes damage to the periodontal ligament and alveolar bone and can cause tooth loss, but there is no definite treatment yet. In this study, we investigated the possibility of using no-ozone cold plasma to safely treat periodontitis in the oral cavity. First, human gingival fibroblasts (HGFs) were treated with P. gingivalis-derived lipopolysaccharide (PG-LPS) to induce an inflammatory response, and then the anti-inflammatory effect of NCP was examined, and a study was conducted to identify the mechanism of action. Additionally, the anti-inflammatory effect of NCP was verified in rats that developed an inflammatory response similar to periodontitis. When NCP was applied to PG-LPS-treated HGFs, the activities of inflammatory proteins and cytokines were effectively inhibited. It was confirmed that the process of denaturing the medium by charged particles of NCP is essential for the anti-inflammatory effect of NCP. Also, it was confirmed that repeated treatment of periodontitis rats with NCP effectively reduced the inflammatory cells and osteoclast activity. As a result, this study suggests that NCP can be directly helpful in the treatment of periodontitis in the future.


Assuntos
Anti-Inflamatórios , Fibroblastos , Gengiva , Lipopolissacarídeos , Periodontite , Porphyromonas gingivalis , Animais , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Ratos , Anti-Inflamatórios/farmacologia , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ozônio/farmacologia , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças , Óxido Nítrico/metabolismo , Células Cultivadas
10.
In Vivo ; 38(4): 1571-1578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936915

RESUMO

BACKGROUND/AIM: Cold physical plasma (CPP) has emerged as an effective therapy in oncology by inducing cytotoxic effects in various cancer cells, including chondrosarcoma (CS), Ewing's sarcoma (ES), and osteosarcoma (OS). The current study investigated the impact of CPP on cell motility in CS (CAL-78), ES (A673), and OS (U2-OS) cell lines, focusing on the actin cytoskeleton. MATERIALS AND METHODS: The CASY Cell Counter and Analyzer was used to study cell proliferation and determine the optimal concentrations of fetal calf serum to maintain viability without stimulation of cell proliferation. CellTiter-BlueCell viability assay was used to determine the effects of CPP on the viability of bone sarcoma cells. The Radius assay was used to determine cell migration. Staining for Deoxyribonuclease I, G-actin, and F-actin was used to assay for the effects on the cytoskeleton. RESULTS: Reductions in cell viability and motility were observed across all cell lines following CPP treatment. CPP induced changes in the actin cytoskeleton, leading to decreased cell motility. CONCLUSION: CPP effectively reduces the motility of bone sarcoma cells by altering the actin cytoskeleton. These findings underscore CPP's potential as a therapeutic tool for bone sarcomas and highlight the need for further research in this area.


Assuntos
Citoesqueleto de Actina , Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Citoesqueleto , Gases em Plasma , Humanos , Movimento Celular/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Actinas/metabolismo , Sarcoma/patologia , Sarcoma/metabolismo
11.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930977

RESUMO

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.


Assuntos
Pressão Atmosférica , Gases em Plasma , Gases em Plasma/química , Poluentes Ambientais/química , Indústria Alimentícia , Antibacterianos/química , Antibacterianos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos/química
12.
Ecotoxicol Environ Saf ; 280: 116547, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843744

RESUMO

Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Gases em Plasma , Tricotecenos , Animais , Camundongos , Tricotecenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Humanos , Inativação Metabólica , Linhagem Celular
13.
J Environ Manage ; 364: 121323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889645

RESUMO

Herein, the novel double Z-scheme Ag-Ag3O4/CuO-CuFe2O4 magnetic nanophotocatalyst with nanosphere-on-nanosheet-like morphology was synthesized via the corona-plasma-assisted starch-templated microwave-combustion-precipitation method to remove the dye pollutants. The CuO-CuFe2O4 meso/macroporous nanophotocatalyst was synthesized using a one-pot-stage combustion-microwave process with/without starch as a hard-template. Subsequently, surface modification was carried out by DC corona-plasma discharge technology at various voltages, namely 500, 1000 and 1500 V. Then, the Ag3O4 photocatalyst was deposited on the CuO-CuFe2O4 fabricated with starch-hard-template and treated with 1000 V corona-plasma (denoted as: Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P). The properties of the synthesized nanophotocatalysts were analyzed using various techniques, including X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (BET-BJH), Vibrating Sample Manetometer (VSM), and Photoluminescence (PL). The XRD analysis corroborated the presence of CuO, CuFe2O4 and Ag3O4 in the structure of all samples. The BET-BJH analysis indicates that the specific surface area of the Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst as the best sample is 2 m2/g, higher than other samples. Additionally, the DRS analysis revealed that the band gap of the Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst is about 1.68 eV with the surface plasmon resonance. The performance of the ternary heterostructured Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst was 96.2% and 89.1% in the degradation of the crystal violet (10 mg/L) and acid orange 7 (10 mg/L), respectively, proving its outstanding degradation capacity.


Assuntos
Corantes , Micro-Ondas , Amido , Corantes/química , Catálise , Amido/química , Prata/química , Cobre/química , Difração de Raios X , Gases em Plasma/química
14.
RNA Biol ; 21(1): 31-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38828710

RESUMO

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Gases em Plasma , Pele , MicroRNAs/genética , Animais , Camundongos , Pele/metabolismo , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cicatrização/efeitos dos fármacos , Transdução de Sinais , Sistema Imunitário/metabolismo
15.
Tissue Eng Part C Methods ; 30(6): 268-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842184

RESUMO

This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N2-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (p < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Nanofibras , Osteoblastos , Nanofibras/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Animais , Poliésteres/química , Poliésteres/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Gases em Plasma/farmacologia , Camundongos , Osteogênese/efeitos dos fármacos , Ácido Láctico/química , Ácido Láctico/farmacologia , Espectroscopia Fotoeletrônica
16.
Waste Manag ; 186: 198-204, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909443

RESUMO

Plasma gasification melting (PGM) provides reliable disposal of toxic medical waste with a low heating value, which is capable of converting waste into energy. This study investigates the performance of experiments on plasma gasification for the treatment of chemical-pharmaceutical medical waste (CPMW) with an air medium. A comparative analysis is performed for gasification characteristics at three reactor temperatures (1000, 1400, and 1800 °C). Moreover, a thermodynamic equilibrium model is developed to assess performance features such as syngas yield, high heating value, and cold gas efficiency in the gasification temperature range of 1000-1800 °C. A comparison of the experiment and computational outcomes shows a good agreement. The results show that the quality of syngas and heating value is improved by increasing the temperature of the plasma gasifier so that at 1800 °C, H2, CO, and higher heating value (HHV) are obtained as 41 %, 37 %, and 10 MJ/Nm3, respectively. The obtained syngas is a clean fuel with low sulfur-containing and nitrogen-containing. The experimental results provide an extensive comprehension of CPMW gasification in a plasma reactor and consider a possibility for hydrogen and energy production.


Assuntos
Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde/análise , Gases em Plasma , Eliminação de Resíduos de Serviços de Saúde/métodos , Modelos Teóricos , Gases , Termodinâmica , Hidrogênio/química
17.
Food Chem ; 455: 139989, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850969

RESUMO

Cornelian cherry pomace is produced during the production of juice from this traditional superfood. Due to its high nutritive value, the by-product can be utilized as a source of bioactive compounds. The present study aimed to develop a sustainable methodology for the recovery of bioactive compounds based on the combination of atmospheric cold plasma (CAP) with ultrasound assisted extraction. The pomace was treated with cold plasma under different conditions. Cyclodextrin was used as green extraction enhancer due to its capacity to develop inclusion complexes with bioactive compounds. CAP pretreatment before extraction appeared to enhance the recovery of the target compounds. GC-MS analysis and in vitro digestion analysis conducted in order to evaluate the composition and the protentional bioavailability of the bioactive compounds. CHEMICALS COMPOUNDS: ß-cyclodextrin (PubChem CID: 444041), DPPH free radical (PubChem CID: 2735032), Trolox (PubChem CID: 40634), sodium carbonate (PubChem CID: 10340), gallic acid (PubChem CID: 370) potassium chloride (PubChem CID: 4873), sodium acetate (PubChem CID: 517045), loganic acid (PubChem CID: 89640), pyridine (PubChem CID: 1049, BSTFA(PubChem CID: 94358), potassium chloride (PubChem CID: 4873), ammonium carbonate (PubChem CID: 517111), calcium chloride dehydrate (PubChem CID: 24844), potassium dihydrogen phosphate (PubChem CID: 516951), magnesium chloride hexahydrate (PubChem CID: 24644), sodium hydrogen carbonate (PubChem CID: 516892), sodium chloride (PubChem CID: 5234).


Assuntos
Extratos Vegetais , Gases em Plasma , Gases em Plasma/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Frutas/química , Prunus avium/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia Gasosa-Espectrometria de Massas , Ultrassom
18.
Food Chem ; 455: 140147, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905783

RESUMO

Plasma-activated seawater (PASW) presents a promising approach for marine fish preservation, yet its antimicrobial efficacy and mechanisms remain unclear. This study found that PASW exhibits superior bactericidal properties against the fish spoilage bacterium Shewanella putrefaciens compared to plasma-activated water (PAW), and increased effectiveness in preserving fish fillets. To clarify the mechanisms, a detailed investigation was conducted, including the generation of reactive oxygen/nitrogen species (ROS/RNS) and active halogen species in PASW, and their antimicrobial efficacy. Findings showed greater nitrite and hydrogen peroxide production in PASW relative to PAW, as well as the conversion of chloride/bromide ions into active species, which collectively enhanced PASW's antimicrobial activity. The synergistic action of ROS/RNS and active chlorine/bromine species in PASW promoted the generation of intracellular ROS, causing increased membrane damage, redox imbalance, and consequently higher bacterial mortality. This study enhances our understanding of PASW's antimicrobial effects and highlights its potential applications in the seafood industry.


Assuntos
Antibacterianos , Peixes , Água do Mar , Shewanella putrefaciens , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/metabolismo , Shewanella putrefaciens/crescimento & desenvolvimento , Animais , Água do Mar/microbiologia , Água do Mar/química , Antibacterianos/farmacologia , Antibacterianos/química , Peixes/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Conservação de Alimentos/métodos , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , Gases em Plasma/farmacologia
19.
Exp Appl Acarol ; 93(2): 339-352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937375

RESUMO

Dermanyssus gallinae, the poultry red mite (PRM), is a hematophagous temporary ectoparasite that causes serious economic losses and animal health impairment on laying hen farms worldwide. Control is limited by the parasite's hidden lifestyle, restrictions on the use of chemical acaricides and the development of resistance against certain drug classes. As a result, research was conducted to explore alternative control methods. In recent years, atmospheric pressure plasma has been increasingly reported as an alternative to chemical acaricides for pest control. This physical method has also shown promising against PRM under laboratory conditions. However, the detailed mechanisms of action have not yet been elucidated. In the present study, the effects of cold atmospheric pressure plasma on PRM were investigated using digital videography and optical coherence tomography (OCT), an imaging technique that visualizes the topography of surfaces and internal structures. Digital videography showed that a redistribution of the contents of the intestinal tract and excretory organs (Malpighian tubules) occurred immediately after plasma exposure. The body fluids reached the distal leg segments of PRM and parts of the haemocoel showed whiter and denser clumps, indicating a coagulation of the haemocoel components. OCT showed a loss of the boundaries of the hollow organs in transverse and sagittal sectional images as well as in the three-dimensional image reconstruction. In addition, a dorso-ventral shrinkage of the idiosoma was observed in plasma-exposed mites, which had shrunk to 44.0% of its original height six minutes after plasma exposure.


Assuntos
Ácaros , Tomografia de Coerência Óptica , Animais , Ácaros/fisiologia , Gases em Plasma/farmacologia , Gravação em Vídeo , Galinhas , Feminino , Doenças das Aves Domésticas/parasitologia , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia
20.
Food Chem ; 456: 139997, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865820

RESUMO

This review discusses the changes in the multi-scale structure and functionality of starch after its hydrothermal modification using plasma-activated water (PAW). PAW contains reactive species that decrease the pH of the water and increase the oxidation-reduction potential, which promotes the oxidation and degradation of the surface of the starch granules to varying extents, depending on the botanical source and treatment conditions. In this article, we compile the information published so far on the effects of using PAW during heat-moisture and annealing treatments and discuss the results of the substitution of water with PAW on the long and short-range crystallinity, helical order, thermal behavior, functional properties, and digestibility. Additionally, we highlighted the possible application of PAW-modified starches. Finally, we provided an overview of future challenges, suggesting several potential directions to understand the mechanisms behind PAW use for developing sustainable modified starches for the food industry.


Assuntos
Amido , Água , Amido/química , Água/química , Oxirredução , Gases em Plasma/química , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA