Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.144
Filtrar
1.
Chem Rev ; 124(14): 8740-8786, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959423

RESUMO

In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.


Assuntos
Aminoácidos , Biocatálise , Aminoácidos/metabolismo , Aminoácidos/química , Aminoácidos/genética , Código Genético , Engenharia de Proteínas , Enzimas/metabolismo , Enzimas/genética , Enzimas/química
2.
3.
Science ; 384(6700): 1134-1142, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843324

RESUMO

The ability to genetically encode noncanonical amino acids (ncAAs) has empowered proteins with improved or previously unknown properties. However, existing strategies in mammalian cells rely on the introduction of a blank codon to incorporate ncAAs, which is inefficient and limits their widespread applications. In this study, we developed a rare codon recoding strategy that takes advantage of the relative rarity of the TCG codon to achieve highly selective and efficient ncAA incorporation through systematic engineering and big data-model predictions. We highlight the broad utility of this strategy for the incorporation of dozens of ncAAs into various functional proteins at the wild-type protein expression levels, as well as the synthesis of proteins with up to six-site ncAAs or four distinct ncAAs in mammalian cells for downstream applications.


Assuntos
Aminoácidos , Códon , Código Genético , Biossíntese de Proteínas , Animais , Humanos , Aminoácidos/genética , Células HEK293 , Biossíntese de Proteínas/genética , Engenharia de Proteínas
4.
Science ; 384(6700): 1053-1054, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843345

RESUMO

Achievement demonstrates feasibility of making all of life's code easily searchable, researchers say.


Assuntos
DNA , DNA/genética , Internet , Código Genético
5.
Chem Rev ; 124(12): 7712-7730, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38829723

RESUMO

The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.


Assuntos
Aminoácidos , Código Genético , RNA de Transferência , Ribossomos , Aminoácidos/metabolismo , Aminoácidos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Biossíntese de Proteínas , Engenharia de Proteínas , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética
6.
PLoS One ; 19(6): e0302710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848321

RESUMO

algebraic concepts such as category are considered cornerstones on which logical consistency relies in any sophisticated study of natural phenomena. However, to the best of our knowledge, in molecular/genetic biology, their application is still severely limited because they capture neither the dynamics nor provide a visual form. The Petri net (PN) has often been used to illustrate visually parallel, asynchronous dynamic events in small data systems. A prototypal hybrid model combining both category theory and extended PNs may instead be indispensable for that purpose. This hybrid model incorporates 1) token-like elements of a group, 2) object-like places of a category, 3) square poles (rather than pentagon poles) that enable unique identifications of single-strand DNA sequences from the shape of its polygonal line, 4) creation/annihilation morphisms that generate/erase tokens, 5) Cartesian products 'Z5×Z2ׅ' that enable conversions between DNA and RNA sequences, 6) somatic recombinations (VDJ recombinations) for antibodies displayed concretely in category-theoretic form, 7) 'identity protein Δ' translated from a triplet of identity bases 'EEE' as an advanced concept from our previous display of the canonical central dogma, 8) illustrations of an incidence-matrix-like matrix A that includes operators as coordinates, and 9) basic topics concerning the canonical central dogma being displayed concretely using concepts of conventional category theory such as 'adjoint', 'adjoint functor', 'natural transformation', 'Yoneda's lemma' and 'Kan extension'. These ideas provide more advanced tools that expand our previous model concerning nucleic-acid-base sequences. Despite the nascent nature of our methodology, our hybrid model has potential in a variety of applications, illustrated using molecular/genetic sequences, in particular providing a simple dynamic/visual representation. With further improvements, this approach may prove effective in reducing the need for large data-storing systems.


Assuntos
Biologia Molecular , Biologia Molecular/métodos , Código Genético , Modelos Genéticos
7.
Biosystems ; 240: 105230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740125

RESUMO

This is a brief review on modeling genetic codes with the aid of 2-adic dynamical systems. In this model amino acids are encoded by the attractors of such dynamical systems. Each genetic code is coupled to the special class of 2-adic dynamics. We consider the discrete dynamical systems, These are the iterations of a function F:Z2→Z2, where Z2 is the ring of 2-adic numbers (2-adic tree). A genetic code is characterized by the set of attractors of a function belonging to the code generating functional class. The main mathematical problem is to reduce degeneration of dynamic representation and select the optimal generating function. Here optimality can be treated in many ways. One possibility is to consider the Lipschitz functions playing the crucial role in general theory of iterations. Then we minimize the Lip-constant. The main issue is to find the proper biological interpretation of code-functions. One can speculate that the evolution of the genetic codes can be described in information space of the nucleotide-strings endowed with ultrametric (treelike) geometry. A code-function is a fitness function; the solutions of the genetic code optimization problem are attractors of the code-function. We illustrate this approach by generation of the standard nuclear and (vertebrate) mitochondrial genetics codes.


Assuntos
Códon , Evolução Molecular , Código Genético , Modelos Genéticos , Código Genético/genética , Códon/genética , Humanos , Animais , Aminoácidos/genética , Aminoácidos/metabolismo , Algoritmos
8.
Chem Rev ; 124(11): 7465-7530, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38753805

RESUMO

Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.


Assuntos
Código Genético , Proteínas , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas/metabolismo , Proteínas/química
9.
Bioessays ; 46(7): e2400058, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724251

RESUMO

The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.


Assuntos
Código Genético , Biossíntese de Proteínas , RNA Mensageiro , Código Genético/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas/genética , Animais , Códon de Terminação/genética , Núcleo Celular/genética , Evolução Molecular , Códon/genética , Eucariotos/genética
10.
Nucleic Acids Res ; 52(12): 7096-7111, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38783009

RESUMO

Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.


Assuntos
Aminoacil-tRNA Sintetases , Conformação de Ácido Nucleico , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Domínio Catalítico , Código Genético , RNA Catalítico/química , RNA Catalítico/metabolismo , Especificidade por Substrato , Leucina-tRNA Ligase/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética
11.
J Physiol ; 602(14): 3297-3313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695316

RESUMO

Various methods for characterizing binding forces as well as for monitoring and remote control of ion channels are still emerging. A recent innovation is the direct incorporation of unnatural amino acids (UAAs) with corresponding biophysical or biochemical properties, which are integrated using genetic code expansion technology. Minimal changes to natural amino acids, which are achieved by chemical synthesis of corresponding UAAs, are valuable tools to provide insight into the contributions of physicochemical properties of side chains in binding events. To gain unique control over the conformational changes or function of ion channels, a series of light-sensitive, chemically reactive and posttranslationally modified UAAs have been developed and utilized. Here, we present the existing UAA tools, their mode of action, their potential and limitations as well as their previous applications to Ca2+-permeable ion channels.


Assuntos
Canais de Cálcio , Código Genético , Humanos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Cálcio/metabolismo
12.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805023

RESUMO

The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.


Assuntos
Bactérias , Evolução Molecular , RNA de Transferência , Temperatura , RNA de Transferência/genética , Bactérias/genética , Códon , RNA Bacteriano/genética , Anticódon/genética , Biossíntese de Proteínas , Modelos Genéticos , Código Genético
13.
Biosystems ; 240: 105226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723994

RESUMO

Robert Rosen defines organisms as material systems closed to efficient causation, and proposes the replicative (M, R) system as a model for them. Recently, we presented a cell model that realizes Rosen's formal model, based on Hofmeyr's analysis of the functional organization of cell biochemistry and on Rosen's construction of the replication function. In this article we propose a cell model that, starting from the same biochemical processes, replaces the replication function with a set of semiotic relations between some of the elements that participate in cellular processes. The result is a cell model that constitutes a semiotic system that realizes closure to efficient causation: a semiotic (M, R) system. We compare the models of closure that correspond to the replicative (M, R) system and the semiotic (M, R) system. Additionally, we discuss the role that the genetic code and protein synthesis play in the semiotic closure to efficient causation. Finally, we outline the method to extend this analysis to more complex organisms.


Assuntos
Modelos Biológicos , Humanos , Replicação do DNA , Código Genético , Biossíntese de Proteínas , Animais
14.
PLoS Biol ; 22(5): e3002594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38754362

RESUMO

The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.


Assuntos
Evolução Molecular , Código Genético , Proteínas , Proteínas/genética , Proteínas/metabolismo , Mutação/genética , Códon/genética , Modelos Genéticos , Biologia Sintética/métodos , Biossíntese de Proteínas , Engenharia de Proteínas/métodos
15.
Nat Commun ; 15(1): 4143, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755134

RESUMO

The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.


Assuntos
Sistema Livre de Células , Escherichia coli , Biossíntese de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Serina/genética , Código Genético , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Engenharia de Proteínas/métodos , Transcrição Gênica , Anticódon/genética , Anticódon/metabolismo
16.
PLoS Biol ; 22(5): e3002627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758732

RESUMO

The relationship between genetic code robustness and protein evolvability is unknown. A new study in PLOS Biology using in silico rewiring of genetic codes and functional protein data identified a positive correlation between code robustness and protein evolvability that is protein-specific.


Assuntos
Evolução Molecular , Código Genético , Proteínas , Proteínas/genética , Proteínas/metabolismo , Modelos Genéticos
17.
Chem Rev ; 124(10): 6592-6642, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38691379

RESUMO

Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.


Assuntos
Código Genético , Fosforilação , Fosfoaminoácidos/metabolismo , Fosfoaminoácidos/química , Fosfoaminoácidos/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética , Humanos
18.
Chembiochem ; 25(11): e202400190, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38588469

RESUMO

Deciphering ubiquitin proteoform signaling and its role in disease has been a long-standing challenge in the field. The effects of ubiquitin modifications, its relation to ubiquitin-related machineries, and its signaling output has been particularly limited by its reconstitution and means of characterization. Advances in genetic code expansion have contributed towards addressing these challenges by precision incorporation of unnatural amino acids through site selective codon suppression. This review discusses recent advances in studying the 'writers', 'readers', and 'erasers' of the ubiquitin code using genetic code expansion. Highlighting strategies towards genetically encoded protein ubiquitination, ubiquitin phosphorylation, acylation, and finally surveying ubiquitin interactions, we strive to bring attention to this unique approach towards addressing a widespread proteoform problem.


Assuntos
Código Genético , Ubiquitina , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina/genética , Humanos , Fosforilação
19.
Biotechnol J ; 19(4): e2300343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622786

RESUMO

Due to the degeneracy of the genetic code, most amino acids are encoded by several codons. The choice among synonymous codons at the N-terminus of genes has a profound effect on protein expression in Escherichia coli. This is often explained by the different contributions of synonymous codons to mRNA secondary structure formation. Strong secondary structures at the 5'-end of mRNA interfere with ribosome binding and affect the process of translation initiation. In silico optimization of the gene 5'-end can significantly increase the level of protein expression; however, this method is not always effective due to the uncertainty of the exact mechanism by which synonymous substitutions affect expression; thus, it may produce nonoptimal variants as well as miss some of the best producers. In this paper, an alternative approach is proposed based on screening a partially randomized library of expression constructs comprising hundreds of selected synonymous variants. The effect of such substitutions was evaluated using the gene of interest fused to the reporter gene of the fluorescent protein with subsequent screening for the most promising candidates according to the reporter's signal intensity. The power of the approach is demonstrated by a significant increase in the prokaryotic expression of three proteins: canine cystatin C, human BCL2-associated athanogene 3 and human cardiac troponin I. This simple approach was suggested which may provide an efficient, easy, and inexpensive optimization method for poorly expressed proteins in bacteria.


Assuntos
Escherichia coli , Código Genético , Animais , Cães , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Códon/genética , Códon/metabolismo , RNA Mensageiro/genética
20.
Chem Rev ; 124(10): 6444-6500, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38688034

RESUMO

Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , Ribossomos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos/metabolismo , Ribossomos/genética , Código Genético , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA