Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.195
Filtrar
1.
Int. microbiol ; 27(2): 505-512, Abr. 2024. graf, tab
Artigo em Inglês | IBECS | ID: ibc-ADZ-161

RESUMO

As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2–0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.(AU)


Assuntos
Humanos , Ácido Succínico , Ácido Glutâmico , Aminoácidos , Saccharomyces cerevisiae , Vinho/análise , Vinho/microbiologia , Ácido gama-Aminobutírico , Microbiologia , Leveduras , Fermentação
2.
Sci Rep ; 14(1): 7707, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565590

RESUMO

Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Ácido Glutâmico/metabolismo , Luteolina/farmacologia , Linhagem Celular , Estresse Oxidativo , Morte Celular , Apoptose , Fármacos Neuroprotetores/farmacologia , Autofagia , Espécies Reativas de Oxigênio/metabolismo
3.
Environ Microbiol ; 26(4): e16621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558504

RESUMO

The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these 'orphan' racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.


Assuntos
Isomerases de Aminoácido , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Racemases e Epimerases , Bactérias/metabolismo , Ácido Glutâmico/metabolismo , Serina
4.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581093

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Peso Molecular , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Genômica , Fermentação
5.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597976

RESUMO

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Assuntos
Glutamina , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Tubulina (Proteína) , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Microtúbulos , Ácido Glutâmico , Infertilidade Masculina/genética , Camundongos Knockout , Mitocôndrias , Proteínas Mitocondriais
6.
Nat Commun ; 15(1): 3119, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600129

RESUMO

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.


Assuntos
Bases de Schiff , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Bases de Schiff/química , Ácido Aspártico , Microscopia Crioeletrônica , Ácido Glutâmico , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Rodopsina/química
7.
BMC Psychiatry ; 24(1): 248, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566016

RESUMO

BACKGROUND: Glutamatergic function abnormalities have been implicated in the etiology of treatment-resistant schizophrenia (TRS), and the efficacy of clozapine may be attributed to its impact on the glutamate system. Recently, evidence has emerged suggesting the involvement of immune processes and increased prevalence of antineuronal antibodies in TRS. This current study aimed to investigate the levels of multiple anti-glutamate receptor antibodies in TRS and explore the effects of clozapine on these antibody levels. METHODS: Enzyme linked immunosorbent assay (ELISA) was used to measure and compare the levels of anti-glutamate receptor antibodies (NMDAR, AMPAR, mGlur3, mGluR5) in clozapine-treated TRS patients (TRS-C, n = 37), clozapine-naïve TRS patients (TRS-NC, n = 39), and non-TRS patients (nTRS, n = 35). Clinical symptom severity was assessed using the Positive and Negative Symptom Scale (PANSS), while cognitive function was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULT: The levels of all four glutamate receptor antibodies in TRS-NC were significantly higher than those in nTRS (p < 0.001) and in TRS-C (p < 0.001), and the antibody levels in TRS-C were comparable to those in nTRS. However, no significant associations were observed between antibody levels and symptom severity or cognitive function across all three groups after FDR correction. CONCLUSION: Our findings suggest that TRS may related to increased anti-glutamate receptor antibody levels and provide further evidence that glutamatergic dysfunction and immune processes may contribute to the pathogenesis of TRS. The impact of clozapine on anti-glutamate receptor antibody levels may be a pharmacological mechanism underlying its therapeutic effects.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efeitos adversos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/diagnóstico , Esquizofrenia Resistente ao Tratamento , Receptores de Glutamato/uso terapêutico , Ácido Glutâmico , Antipsicóticos/efeitos adversos
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612414

RESUMO

Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1ß, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1ß, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1ß and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Interleucina-18 , Proteínas Quinases Ativadas por AMP , Ácido Glutâmico , Interleucina-1beta , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Analgésicos
9.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612427

RESUMO

Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.


Assuntos
Fabaceae , Tecnécio , Animais , Camundongos , Distribuição Tecidual , Ligantes , Quelantes , Ácido Glutâmico , Glicina
10.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612529

RESUMO

Clostridium perfringens is a kind of anaerobic Gram-positive bacterium that widely exists in the intestinal tissue of humans and animals. And the main virulence factor in Clostridium perfringens is its exotoxins. Clostridium perfringens type C is the main strain of livestock disease, its exotoxins can induce necrotizing enteritis and enterotoxemia, which lead to the reduction in feed conversion, and a serious impact on breeding production performance. Our study found that treatment with exotoxins reduced cell viability and triggered intracellular reactive oxygen species (ROS) in human mononuclear leukemia cells (THP-1) cells. Through transcriptome sequencing analysis, we found that the levels of related proteins such as heme oxygenase 1 (HO-1) and ferroptosis signaling pathway increased significantly after treatment with exotoxins. To investigate whether ferroptosis occurred after exotoxin treatment in macrophages, we confirmed that the protein expression levels of antioxidant factors glutathione peroxidase 4/ferroptosis-suppressor-protein 1/the cystine/glutamate antiporter solute carrier family 7 member 11 (GPX4/FSP1/xCT), ferroptosis-related protein nuclear receptor coactivator 4/transferrin/transferrin receptor (NCOA4/TF/TFR)/ferritin and the level of lipid peroxidation were significantly changed. Based on the above results, our study suggested that Clostridium perfringens type C exotoxins can induce macrophage injury through oxidative stress and ferroptosis.


Assuntos
Antioxidantes , Clostridium perfringens , Animais , Humanos , Antiporters , Exotoxinas , Ácido Glutâmico
11.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612544

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/tratamento farmacológico , Ácido Glutâmico
12.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612801

RESUMO

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Assuntos
Astrócitos , Neocórtex , Animais , Camundongos , Receptores de N-Metil-D-Aspartato , Neurônios , Ácido Glutâmico , Canais Iônicos
13.
Transl Psychiatry ; 14(1): 183, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600117

RESUMO

Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .


Assuntos
Antipsicóticos , Conectoma , Transtornos Psicóticos , Humanos , Antipsicóticos/uso terapêutico , Encéfalo , Ácido Glutâmico , Glutamina , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia
14.
Commun Biol ; 7(1): 443, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605181

RESUMO

Glutamate is an essential biological compound produced for various therapeutic and nutritional applications. The current glutamate production process requires a large amount of ammonium, which is generated through the energy-consuming and CO2-emitting Haber-Bosch process; therefore, the development of bio-economical glutamate production processes is required. We herein developed a strategy for glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. We showed that a simultaneous supply of glucose and citrate as carbon sources enhanced the nitrogenase activity of K. oxytoca. In the presence of glucose and citrate, K. oxytoca strain that was genetically engineered to increase the supply of 2-oxoglutarate, a precursor of glutamate synthesis, produced glutamate extracellularly more than 1 g L-1 from aerial nitrogen. This strategy offers a sustainable and eco-friendly manufacturing process to produce various nitrogen-containing compounds using aerial nitrogen.


Assuntos
Ácido Glutâmico , Klebsiella oxytoca , Klebsiella oxytoca/genética , Nitrogênio , Ácido Cítrico , Engenharia Metabólica , Glucose
15.
Sci Adv ; 10(15): eadk4027, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608020

RESUMO

Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.


Assuntos
Resistência à Seca , Triticum , Triticum/genética , Ácido Glutâmico , Proteínas de Membrana Transportadoras , Potássio , Ácido gama-Aminobutírico
16.
Sci Rep ; 14(1): 8558, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609494

RESUMO

Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Humanos , Criança , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Expressão Gênica , Ácido Glutâmico , Receptores de Glutamato Metabotrópico/genética
17.
Food Res Int ; 181: 114075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448093

RESUMO

Directional and rapid formation of the Amadori rearrangement product (ARP) from the glutamic acid and xylose was achieved through intermittent microwave heating. The yield of ARP reached 58.09 % by subjecting the system to intermittent microwave heating at a power density of 10 W/g for 14 min. Dehydration rate and microwave effects were found to be key factors to optimize the conditions for directional and rapid preparation of the ARP. Through a comprehensive analysis of the ARP degradation and further browning under both conductive and microwave thermal processing, it was observed that microwave processing significantly accelerated the browning degree of systems, leading to a tenfold reduction in the heating time required for browning. This research presented a promising avenue for the development of novel and expedited methods for the production of ARP and highlighted the potential of ARP in enhancing color quality in fast-cooking applications utilizing microwave.


Assuntos
Ácido Glutâmico , Calefação , Micro-Ondas , Xilose , Culinária
18.
Anal Chim Acta ; 1297: 342374, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438229

RESUMO

BACKGROUND: Understanding Aß aggregation and inhibiting it at early stages is of utmost importance in treating Alzheimer's and other related amyloidogenic diseases. However, majority of the techniques to study Aß aggregation mainly target the late stages; while those used to monitor early stages are either expensive, use extrinsic dyes, or do not provide information on molecular level interactions. Here, we investigate the early events of Aß16-22(KLVFFAE) aggregation using Aß16-22 derived switch-peptides (SwPs) through a novel label-free approach employing Protein Charge Transfer Spectra (ProCharTS). RESULTS: When pH is increased from 2 to 7.2, the Aß-derived switch peptides undergo controlled self-assembly, where the initial random coil peptides convert into ß-sheet. We leveraged the intrinsic absorbance/luminescence arising from ProCharTS among growing peptide oligomers to observe the aggregation kinetics in real-time. In comparison to monomer, the lysine and glutamate headgroups in the peptide oligomer are expected to come in proximity enhancing ProCharTS intensity due to photoinduced electron transfer. With a combination of Aß-derived switch-peptides and ProCharTS, we obtained structural insights on the early stages of Aß-derived SwP aggregation in four unique peptides. Increase in scatter corrected ProCharTS absorbance (250-500 nm) and luminescence (320-720 nm) along with decreased mean luminescence lifetime (2.3-0.8 ns) characterize the initial stages of aggregation monitored for 1-96 h depending on the peptide. We correlated the results with Circular Dichroism (CD), 8-anilino-1-naphthalenesulfonic acid (ANS) and Thioflavin T (ThT) measurements. SIGNIFICANCE: We demonstrate ProCharTS as an intrinsic analytical probe with following advantages over other conventional methods to track aggregation: it is a label-free probe; it's intensity can be measured using a UV-Vis spectrophotometer; it is more sensitive in detecting the early molecular events in aggregation compared to ANS and ThT; and it can provide information on specific contacts made between charged headgroups of Lysine/Glutamate in the oligomer.


Assuntos
Lisina , Peptídeos , Ácido Glutâmico , Dicroísmo Circular , Corantes
19.
PLoS One ; 19(3): e0299042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427657

RESUMO

Epigallocatechin gallate (EGCG) is a polyphenolic component of green tea that has anti-oxidative and anti-inflammatory effects in neurons. Ischemic stroke is a major neurological disease that causes irreversible brain disorders. It increases the intracellular calcium concentration and induces apoptosis. The regulation of intracellular calcium concentration is important to maintain the function of the nervous system. Hippocalcin is a neuronal calcium sensor protein that controls intracellular calcium concentration. We investigated whether EGCG treatment regulates the expression of hippocalcin in stroke animal model and glutamate-induced neuronal damage. We performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. EGCG (50 mg/kg) or phosphate buffered saline was injected into the abdominal cavity just before MCAO surgery. The neurobehavioral tests were performed 24 h after MCAO surgery and cerebral cortex tissue was collected. MCAO damage induced severe neurobehavioral disorders, increased infarct volume, and decreased the expression of hippocalcin in the cerebral cortex. However, EGCG treatment improved these deficits and alleviated the decrease in hippocalcin expression in cerebral cortex. In addition, EGCG dose-dependently alleviated neuronal cell death and intracellular calcium overload in glutamate-exposed neurons. Glutamate exposure reduced hippocalcin expression, decreased Bcl-2 expression, and increased Bax expression. However, EGCG treatment mitigated these changes caused by glutamate toxicity. EGCG also attenuated the increase in caspase-3 and cleaved caspase-3 expressions caused by glutamate exposure. The effect of EGCG was more pronounced in non-transfected cells than in hippocalcin siRNA-transfected cells. These findings demonstrate that EGCG protects neurons against glutamate toxicity through the regulation of Bcl-2 family proteins and caspase-3. It is known that hippocalcin exerts anti-apoptotic effect through the modulation of apoptotic pathway. Thus, we can suggest evidence that EGCG has a neuroprotective effect by regulating hippocalcin expression in ischemic brain damage and glutamate-exposed cells.


Assuntos
Catequina , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Catequina/análogos & derivados , Ácido Glutâmico/metabolismo , Hipocalcina/genética , Hipocalcina/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Modelos Animais de Doenças
20.
J Oleo Sci ; 73(3): 359-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433000

RESUMO

Neuronal cell death and dysfunction of the central nervous system can be caused by oxidative stress, which is associated with the development of neurodegenerative diseases. Sophocarpine, an alkaloid compound derived from Sophora moorcroftiana (Benth.) Baker seeds, has a wide range of medicinal value. This study sought to determine how sophocarpine exerts neuroprotective effects by inhibited oxidative stress and apoptosis in mouse hippocampus neuronal (HT22) cells. 20mM glutamate-induced HT22 cells were used to develop an in vitro model of oxidative stress damage. The Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. According to the instructions on the kits to detect reactive oxygen species (ROS) levels and oxidative stress indicators. HT22 cells were examined using immunofluorescence and Western Blotting to detect Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) expression. The expression of proteins and messenger RNA (mRNA) for heme oxygenase-1 (HO-1) was examined by Western Blotting and Quantitative real time polymerase chain reaction (qRT-PCR). Mitochondrial membrane potential (MMP) and Cell apoptosis were used by 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide (JC- 1) kit and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay kit, respectively. Finally, the expression of pro-apoptotic proteins was detected by Western Blotting. The result demonstrated that sophocarpine (1.25 µM-10 µM) can significantly inhibit glutamate-induced cytotoxicity and ROS generation, improve the activity of antioxidant enzymes. Sophocarpine increased the expression of HO-1 protein and mRNA and the nuclear translocation of Nrf2 to play a cytoprotective role; however, cells were transfected with small interfering RNA targeting HO-1 (si-HO-1) reversed the above effects of sophocarpine. In addition, sophocarpine significantly inhibited glutamate induced mitochondrial depolarization and further inhibited cell apoptosis by reducing the expression level of caspase-related proteins.


Assuntos
Alcaloides , Matrinas , Fármacos Neuroprotetores , Animais , Camundongos , Alcaloides/farmacologia , Ácido Glutâmico/toxicidade , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , RNA Mensageiro/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...