Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Appl Environ Microbiol ; 89(1): e0189522, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36622180

RESUMO

A harmful algal bloom occurred in late spring 2019 across multiple, interconnected fjords and bays in northern Norway. The event was caused by the haptophyte Chrysochromulina leadbeateri and led to severe fish mortality at several salmon aquaculture facilities. This study reports on the spatial and temporal succession dynamics of the holistic marine microbiome associated with this bloom by relating all detectable 18S and 16S rRNA gene amplicon sequence variants to the relative abundance of the C. leadbeateri focal taxon. A k-medoid clustering enabled inferences on how the causative focal taxon cobloomed with diverse groups of bacteria and microeukaryotes. These coblooming patterns showed high temporal variability and were distinct between two geographically separated time series stations during the regional harmful algal bloom. The distinct blooming patterns observed with respect to each station were poorly connected to environmental conditions, suggesting that other factors, such as biological interactions, may be at least as important in shaping the dynamics of this type of harmful algal bloom. A deeper understanding of microbiome succession patterns during these rare but destructive events will help guide future efforts to forecast deviations from the natural bloom cycles of the northern Norwegian coastal marine ecosystems that are home to intensive aquaculture activities. IMPORTANCE The 2019 Chrysochromulina leadbeateri bloom in northern Norway had a major impact on the local economy and society through its devastating effect on the aquaculture industry. However, many fail to remember that C. leadbeateri is, in fact, a common member of the seasonal marine microbiome and the same spring phytoplankton blooms that support the marine ecosystem. It is challenging to draw any conclusions about exact causation behind the harmful bloom of 2019, especially since the natural bloom cycles of C. leadbeateri are not well understood. This study begins to fill major knowledge gaps that may lead to future forecasting abilities, by providing a molecular-based investigation of the destructive 2019 bloom that presents new insights into a seasonal marine microbial ecosystem during one of these sporadically reoccurring events.


Assuntos
Dinoflagelados , Haptófitas , Microbiota , Animais , Ecossistema , RNA Ribossômico 16S/genética , Proliferação Nociva de Algas , Fitoplâncton
2.
Elife ; 122023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36691727

RESUMO

Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in the biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we analyzed bacterial transcriptomes in response to exudates derived from algae in exponential growth and stationary phase, which supported the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. In pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and diverse transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles, supporting our previous findings. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7 and hindered the DMSP-induced lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological state of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during interaction.


Assuntos
Haptófitas , Rhodobacteraceae , Fitoplâncton/metabolismo , Fitoplâncton/microbiologia
3.
Sci Adv ; 9(3): eadc8728, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662866

RESUMO

Marine coccolithophores are globally distributed, unicellular phytoplankton that produce nanopatterned, calcite biominerals (coccoliths). These biominerals are synthesized internally, deposited into an extracellular coccosphere, and routinely released into the external medium, where they profoundly affect the global carbon cycle. The cellular costs and benefits of calcification remain unresolved. Here, we show observational and experimental evidence, supported by biophysical modeling, that free coccoliths are highly adsorptive biominerals that readily interact with cells to form chimeric coccospheres and with viruses to form "viroliths," which facilitate infection. Adsorption to cells is mediated by organic matter associated with the coccolith base plate and varies with biomineral morphology. Biomineral hitchhiking increases host-virus encounters by nearly an order of magnitude and can be the dominant mode of infection under stormy conditions, fundamentally altering how we view biomineral-cell-virus interactions in the environment.


Assuntos
Haptófitas , Viroses , Humanos , Adsorção , Carbonato de Cálcio , Calcificação Fisiológica
4.
J Hazard Mater ; 445: 130540, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493642

RESUMO

Rotifers have great potential in controlling the harmful algae Phaeocystis blooms that frequently occur in coastal waters. To evaluate the effects of harmful algae on the key life-history traits of rotifer in eliminating Phaeocystis and reveal the underlying mechanism of these effects, we fed Brachionus plicatilis with Chlorella vulgaris and Phaeocystis globosa respectively, recorded the key life-history traits, and conducted transcriptomic analysis. Results showed that the rotifers feeding on P. globosa significantly decreased total offspring but obviously prolonged lifespan compared to those feeding on C. vulgaris, indicating that there was a trade-off between the reproduction and lifespan of rotifers feeding on algae with different nutrient contents. Nevertheless, rotifers can completely eliminate the population of P. globosa. The changes in the reproduction and lifespan of rotifers are highly correlated with algal key nutrition and the expression of some related genes. Transcriptomic analysis showed that the changes in the key life history traits of rotifers feeding on harmful algae are determined by regulating the expression of some key genes involved in the pathways of carbohydrate digestion and absorption, glycolysis, gluconeogenesis, unsaturated fatty acid biosynthesis, and environmental stress. Understanding the trade-off of the key life history traits of zooplankton in eliminating harmful algae from the underlying mechanism helps improve their application for controlling harmful algae.


Assuntos
Chlorella vulgaris , Haptófitas , Traços de História de Vida , Rotíferos , Animais , Haptófitas/genética , Transcriptoma , Rotíferos/genética , Rotíferos/metabolismo
5.
Chemosphere ; 313: 137647, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574786

RESUMO

Harmful algal blooms (HABs) from seawater have a severe threat to human health, aquaculture, and coastal nuclear power safety. Thus, it is highly desirable to explore environmentally friendly, efficient, and economic methods for controlling HABs. Herein, the arbutin-modified cellulose nanocrystals (AT-CNC) activated persulfate (PS), as a novel heterogeneous Fenton-like process, was proposed to remove Phaeocystis globosa (P. globosa) from seawater. The AT-CNC was synthesized via the surface modification of AT on CNC. The effects of AT dosage, CNC dosage, and PS dosage on the removal performance of P. globosa were investigated. With the addition of 530 mg/L AT-CNC (6 wt% AT/CNC of AT loading) and 120 mg/L PS, the removal percentage of chlorophyll a (Rc), optical density at 680 nm (Ro) and turbidity (Rt) reached 97.7%, 91.9% and 85.2% at 24 h. According to electron paramagnetic resonance (EPR) spectra and radical quenching tests, the predominant free radicals inactivating P. globosa were hydroxyl radicals (•OH). Additionally, the flocculation of the inactivated algae cells by AT-CNC was also critical for removing P. globosa. Moreover, a positive environmental impact was achieved in the AT-CNC-PS system due to the reduction of nitrogen, phosphorus and organic carbon contents. Based on the excellent removal performance for P. globosa, we believe that the AT-CNC activated persulfate is a promising option for HABs control.


Assuntos
Haptófitas , Humanos , Arbutina/farmacologia , Clorofila A , Proliferação Nociva de Algas , Água do Mar
6.
Mar Pollut Bull ; 186: 114453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495614

RESUMO

Some algae possess a multi-morphic life cycle, either in the form of free-living solitary cells or colonies which constantly occur in algal blooms. Though colony formation seems to consume extra energy and materials, many algae tend to outbreak in form of colonies. Here, we hypothesized that colony formation is a selected evolutionary strategy to improve population competitiveness and environmental adaptation. To test the hypothesis, different sizes of colonies and solitary cells in a natural bloom of Phaeocystis globosa were investigated. The large colony showed a relatively low oxidant stress level, a nutrient trap effect, and high nutrient use efficiency. The colonial nitrogen and phosphorus concentrations were about 5-10 times higher than solitary cell phycosphere and cellular nutrient allocation decreased with the enlargement of the colonial diameter following the economies of scale law. These features provide the colony with monopolistic competence and could function as an evolutionary strategy for competitive adaptation.


Assuntos
Haptófitas , Eutrofização , Aclimatação
9.
Mar Pollut Bull ; 185(Pt A): 114228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274557

RESUMO

Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.


Assuntos
Haptófitas , Ipomoea , Ipomoea/química , Ipomoea/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação Nociva de Algas
10.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293526

RESUMO

Phaeocystis globosa is a marine-bloom-forming haptophyte with a polymorphic life cycle alternating between free-living cells and a colonial morphotype, that produces high biomass and impacts ecological structure and function. The mechanisms of P. globosa bloom formation have been extensively studied, and various environmental factors are believed to trigger these events. However, little is known about the intrinsic biological processes that drive the bloom process, and the mechanisms underlying P. globosa bloom formation remain enigmatic. Here, we investigated a P. globosa bloom occurring along the Chinese coast and compared the proteomes of in situ P. globosa colonies from bloom and dissipation phases using a tandem mass tag (TMT)-based quantitative proteomic approach. Among the 5540 proteins identified, 191 and 109 proteins displayed higher abundances in the bloom and dissipation phases, respectively. The levels of proteins involved in photosynthesis, pigment metabolism, nitrogen metabolism, and matrix substrate biosynthesis were distinctly different between these two phases. Ambient nitrate is a key trigger of P. globosa bloom formation, while the enhanced light harvest and multiple inorganic carbon-concentrating mechanisms support the prosperousness of colonies in the bloom phase. Additionally, colonies in the bloom phase have greater carbon fixation potential, with more carbon and energy being fixed and flowing toward the colonial matrix biosynthesis. Our study revealed the key biological processes underlying P. globosa blooms and provides new insights into the mechanisms behind bloom formation.


Assuntos
Haptófitas , Haptófitas/metabolismo , Proteômica , Proteoma/metabolismo , Nitratos/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo
11.
Harmful Algae ; 118: 102287, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195411

RESUMO

A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L - 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.


Assuntos
Haptófitas , Animais , Peixes , Marcadores Genéticos , Haptófitas/genética , Nitratos , Fosfatos , RNA Ribossômico 18S/genética
12.
Harmful Algae ; 118: 102295, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195421

RESUMO

Karenia brevis, a neurotoxic dinoflagellate that produces brevetoxins, is endemic to the Gulf of Mexico and can grow at high irradiances typical of surface waters found there. To build upon a growing number of studies addressing high-light tolerance in K. brevis, specific photobiology and molecular mechanisms underlying this capacity were evaluated in culture. Since photosystem II (PSII) repair cycle activity can be crucial to high light tolerance in plants and algae, the present study assessed this capacity in K. brevis and characterized the ftsH-like genes which are fundamental to this process. Compared with cultures grown in low-light, cultures grown in high-light showed a 65-fold increase in PSII photoinactivation, a ∼50-fold increase in PSII repair, enhanced nonphotochemical quenching (NPQ), and depressed Fv/Fm. Repair rates were among the fastest reported in phytoplankton. Publicly available K. brevis transcriptomes (MMETSP) were queried for ftsH-like sequences and refined with additional sequencing from two K. brevis strains. The genes were phylogenetically related to haptophyte orthologs, implicating acquisition during tertiary endosymbiosis. RT-qPCR of three of the four ftsH-like homologs revealed that poly-A tails predominated in all homologs, and that the most highly expressed homolog had a 5' splice leader and amino-acid motifs characteristic of chloroplast targeting, indicating nuclear encoding for this plastid-targeted gene. High-light cultures showed a ∼1.5-fold upregulation in mRNA expression of the thylakoid-associated genes. Overall, in conjunction with NPQ mechanisms, rapid PSII repair mediated by a haptophyte-derived ftsH prevents chronic photoinhibition in K. brevis. Our findings continue to build the case that high-light photobiology-supported by the acquisition and maintenance of tertiary endosymbiotic genes-is critical to the success of K. brevis in the Gulf of Mexico.


Assuntos
Dinoflagelados , Haptófitas , Dinoflagelados/genética , Dinoflagelados/metabolismo , Haptófitas/genética , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , RNA Mensageiro/metabolismo
13.
Funct Plant Biol ; 49(12): 1085-1094, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36059160

RESUMO

The effect of light, copper ions, copper oxide nanoparticles on the change in the structural, functional, cytometric, fluorescent parameters of coccolithophore Pleurochrysis sp. was investigated. The culture Pleurochrysis sp. was represented by two cell forms: (1) covered with coccoliths; and (2) not covered, the ratio of which depends from growth conditions. An increase in light from 20 to 650µEm-2 s-1 led to a decrease in the concentration of cells covered with coccoliths from 90 to 35%. With an increase in light, the decrease in the values of variable chlorophyll a fluorescence was observed, a decrease in the chlorophyll concentration was noted, and an increase in cell volumes and their granularity due to coccoliths 'overproduction' was recorded. A tolerance of Pleurochrysis sp. to the effect of copper was registered, both in the ionic form and in the form of a nanopowder. This is probably due to the morphological (presence of coccoliths) and physiological (ligand production) peculiarities of species. Copper did not affect the ratio of cells covered with coccoliths; its value was about 85%. Growth inhibition, a 2-fold decrease in the intracellular chlorophyll content, a decrease in F v /F m , and a pronounced cell coagulation were recorded at the maximum Cu2+ concentration (625µgL-1 ). The mechanical effect was registered of CuO nanoparticles on the surface of Pleurochrysis sp. coccosphere, which results in the emergence of destroyed and deformed coccoliths. A hypothesis is proposed considering the protective function of coccoliths acting as a barrier when the cells are exposed to nanoparticles and copper ions.


Assuntos
Haptófitas , Haptófitas/química , Cobre/farmacologia , Clorofila A/metabolismo , Carbonato de Cálcio/química
14.
Int Immunopharmacol ; 111: 109149, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027851

RESUMO

Incorporating microalgae active peptides into functional foods is one of the hottest topics in algae research. Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) is a novel octapeptide isolated from the microalgae, Isochrysis Zhanjiangensis that inhibits the vascular injury, angiogenesis and has a protective effect on cardiovascular diseases. In this study, IEC can suppress ROS production and inhibit pro-inflammatory factors through the Nrf2/SOD/HO-1 and NF-κB signaling pathways. Additionally, IEC inhibits angiogenesis by reducing the expression of MMP2 and MMP9 via the PI3K/AKT, NF-κB, and MAPK pathways. Molecular docking also demonstrated that IEC possesses an excellent docking effect with SOD, Bcl-2 and VEGFR-2. In conclusion, this study not only provides a new idea for the prevention of cardiovascular diseases, but also proves the possibility of octapeptide (IEC) in functional food and drugs, and further improves the use value of microalgae (Isochrysis Zhanjiangensis).


Assuntos
Doenças Cardiovasculares , Haptófitas , Microalgas , Lesões do Sistema Vascular , Haptófitas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microalgas/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Superóxido Dismutase
15.
Mar Drugs ; 20(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36005513

RESUMO

The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.


Assuntos
Haptófitas , Microalgas , Biomassa , Cromatografia , Etanol , Haptófitas/química , Microalgas/química , Xantofilas/análise
16.
Harmful Algae ; 117: 102292, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944956

RESUMO

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis. Here, we sampled two consecutive Phaeocystis globosa spring blooms in the coastal North Sea. In both years, bacterial cells were observed inside 0.6 - 2% of P. globosa cells using double CARD-FISH hybridizations in combination with laser scanning confocal microscopy. Incubation experiments manipulating light and nutrient availability showed a trend towards higher occurrence of intracellular bacteria under P-deplete conditions. Based on counts of bacteria inside P. globosa cells in combination with theoretical values of prey digestion times, maximum ingestion rates of up to 0.08 bacteria cell-1 h-1 were estimated. In addition, a gene-based predictive model was applied to the transcriptome assemblies of seven Phaeocystis strains and 24 other haptophytes to assess their trophic mode. This model predicted a phago-mixotrophic feeding strategy in several (but not all) strains of P. globosa, P. antarctica and other haptophytes that were previously assumed to be autotrophic. The observation of bacterial cells inside P. globosa and the gene-based model predictions strongly suggest that the phago-mixotrophic feeding strategy is widespread among members of the Phaeocystis genus and other haptophytes, and might contribute to their remarkable success to form nuisance blooms under nutrient-limiting conditions.


Assuntos
Haptófitas , Bactérias , Fitoplâncton , Estações do Ano
17.
Mar Biotechnol (NY) ; 24(4): 753-762, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35902415

RESUMO

Isochrysis galbana is widely used in aquaculture as a bait microalgal species. High temperature (HT) can severely impair the development of I. galbana, exerting adverse effects on its yield. MicroRNAs (miRNAs) play an essential role in modulating stress-responsive genes. However, the role of miRNAs in response to HT in microalgae remains largely unexplored. In the present study, we identified several conserved and novel miRNAs in I. galbana through miRNome sequencing. Among these identified miRNAs, 22 miRNAs were differentially expressed in response to heat stress, and their target genes were predicted accordingly. Moreover, a comprehensive and integrated analysis of miRNome and transcriptome was performed. We found that six potential reversely correlated differentially expressed miRNA (DEM) and differentially expressed gene (DEG) pairs were associated with heat stress response (HSR) in I. galbana. The expressions of DEMs and DEGs were further verified using real-time quantitative PCR (RT-qPCR). Integrated analyses showed that miRNAs played fundamental roles in the regulatory network of HSR in I. galbana mainly by regulating some heat-responsive genes, including heat shock proteins (HSPs), reactive oxygen species (ROS) signaling-related genes, and specific key genes in the ubiquitination pathway. Our current study identified the first set of heat-responsive miRNAs from I. galbana and helped elucidate the miRNA-mediated HSR and resistance mechanisms in I. galbana. This new knowledge could provide ways to enhance its heat stress tolerance.


Assuntos
Haptófitas , MicroRNAs , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Haptófitas/genética , Haptófitas/metabolismo , Resposta ao Choque Térmico/genética , Temperatura Alta , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma
18.
Sci Total Environ ; 848: 157654, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35908707

RESUMO

Leftover dough is a starch-rich food processing waste of Chinese steamed bread. Leftover dough hydrolysates enriched with glucose and amino acids were used to cultivate the marine microalga Isochrysis galbana to produce docosahexaenoic acid (DHA) under CO2 enrichment. Isochrysis galbana could use mixed carbon sources (CO2, glucose, and amino acids) synchronously to grow and accumulate DHA. Cell growth, the uptake of glucose and amino acids, and DHA production were significantly affected by CO2 enrichment. The maximum biomass concentration of 3.85 g L-1 was achieved with 3 % CO2. And the maximum DHA yield was 65.5 mg L-1 d-1. To enhance DHA production, a two-stage cultivation strategy was successfully developed by this work. The maximum DHA yield of the two-stage culture was elevated by 2.3-fold. It is feasible to produce DHA by Isochrysis galbana using leftover dough under CO2 enrichment.


Assuntos
Haptófitas , Microalgas , Aminoácidos/metabolismo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Manipulação de Alimentos , Glucose/metabolismo , Microalgas/metabolismo , Amido/metabolismo
19.
ISME J ; 16(11): 2457-2466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35869388

RESUMO

The interactions between Emiliania huxleyi and E. huxleyi virus (EhV) regulate marine carbon and sulfur biogeochemical cycles and play a prominent role in global climate change. As a large DNA virus, EhV has developed a novel "virocell metabolism" model to meet its high metabolic needs. Although it has been widely demonstrated that EhV infection can profoundly rewire lipid metabolism, the epigenetic regulatory mechanisms of lipid metabolism are still obscure. MicroRNAs (miRNAs) can regulate biological pathways by targeting hub genes in the metabolic processes. In this study, the transcriptome, lipidome, and miRNAome were applied to investigate the epigenetic regulation of lipid metabolism in E. huxleyi cells during a detailed time course of viral infection. Combined transcriptomic, lipidomic, and physiological experiments revealed reprogrammed lipid metabolism, along with mitochondrial dysfunction and calcium influx through the cell membrane. A total of 69 host miRNAs (including 1 known miRNA) and 7 viral miRNAs were identified, 27 of which were differentially expressed. Bioinformatic prediction revealed that miRNAs involved in the regulation of lipid metabolism and a dual-luciferase reporter assay suggested that phosphatidylinositol 3-kinase (PI3K) gene might be a target of ehx-miR5. Further qPCR and western blot analysis showed a significant negative correlation between the expression of ehx-miR5 and its target gene PI3K, along with the lower activity of its downstream components (p-Akt, p-TOR, SREBP), indicating that lipid metabolism might be regulated by ehx-miR5 through the PI3K-Akt-TOR signaling pathway. Our findings reveal several novel mechanisms of viral strategies to manipulate host lipid metabolism and provide evidence that ehx-miR5 negatively modulates the expression of PI3K and disturbs lipid metabolism in the interactions between E. huxleyi and EhV.


Assuntos
Haptófitas , MicroRNAs , Vírus , Cálcio/metabolismo , Carbono/metabolismo , Epigênese Genética , Haptófitas/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Enxofre/metabolismo , Vírus/metabolismo
20.
Bioresour Technol ; 360: 127582, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798166

RESUMO

Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.


Assuntos
Haptófitas , Microalgas , Acústica , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...