Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.946
Filtrar
1.
mSystems ; 9(7): e0050524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953320

RESUMO

Nanopore direct RNA sequencing (DRS) enables the capture and full-length sequencing of native RNAs, without recoding or amplification bias. Resulting data sets may be interrogated to define the identity and location of chemically modified ribonucleotides, as well as the length of poly(A) tails, on individual RNA molecules. The success of these analyses is highly dependent on the provision of high-resolution transcriptome annotations in combination with workflows that minimize misalignments and other analysis artifacts. Existing software solutions for generating high-resolution transcriptome annotations are poorly suited to small gene-dense genomes of viruses due to the challenge of identifying distinct transcript isoforms where alternative splicing and overlapping RNAs are prevalent. To resolve this, we identified key characteristics of DRS data sets that inform resulting read alignments and developed the nanopore guided annotation of transcriptome architectures (NAGATA) software package (https://github.com/DepledgeLab/NAGATA). We demonstrate, using a combination of synthetic and original DRS data sets derived from adenoviruses, herpesviruses, coronaviruses, and human cells, that NAGATA outperforms existing transcriptome annotation software and yields a consistently high level of precision and recall when reconstructing both gene sparse and gene-dense transcriptomes. Finally, we apply NAGATA to generate the first high-resolution transcriptome annotation of the neglected pathogen human adenovirus type F41 (HAdV-41) for which we identify 77 distinct transcripts encoding at least 23 different proteins. IMPORTANCE: The transcriptome of an organism denotes the full repertoire of encoded RNAs that may be expressed. This is critical to understanding the biology of an organism and for accurate transcriptomic and epitranscriptomic-based analyses. Annotating transcriptomes remains a complex task, particularly in small gene-dense organisms such as viruses which maximize their coding capacity through overlapping RNAs. To resolve this, we have developed a new software nanopore guided annotation of transcriptome architectures (NAGATA) which utilizes nanopore direct RNA sequencing (DRS) datasets to rapidly produce high-resolution transcriptome annotations for diverse viruses and other organisms.


Assuntos
Anotação de Sequência Molecular , Software , Transcriptoma , Humanos , Transcriptoma/genética , Anotação de Sequência Molecular/métodos , Análise de Sequência de RNA/métodos , Herpesviridae/genética , Coronavirus/genética , Sequenciamento por Nanoporos/métodos , Nanoporos , Adenoviridae/genética
2.
Nat Microbiol ; 9(7): 1842-1855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918469

RESUMO

The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.


Assuntos
Capsídeo , Núcleo Celular , Microscopia Crioeletrônica , Membrana Nuclear , Liberação de Vírus , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Membrana Nuclear/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Nucleocapsídeo/metabolismo , Tomografia com Microscopia Eletrônica , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/fisiologia , Herpesviridae/genética
3.
Viruses ; 16(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932138

RESUMO

Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.


Assuntos
DNA Viral , Genoma Viral , Interações Hospedeiro-Patógeno , Replicação Viral , Humanos , DNA Viral/genética , DNA Viral/metabolismo , Vírus de DNA/genética , Animais , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/genética , Herpesviridae/metabolismo , Herpesviridae/fisiologia , Vaccinia virus/genética
4.
Sci Rep ; 14(1): 14605, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918446

RESUMO

A previous study suggested that fetal inheritance of chromosomally integrated human herpesvirus 6 (ici-HHV6) is associated with the hypertensive pregnancy disorder preeclampsia (PE). We aimed to study this question utilizing cord plasma samples (n = 1276) of the Finnish Genetics of Preeclampsia Consortium (FINNPEC) cohort: 539 from a pregnancy with PE and 737 without. We studied these samples and 30 placentas from PE pregnancies by a multiplex qPCR for the DNAs of all nine human herpesviruses. To assess the population prevalence of iciHHV-6, we studied whole-genome sequencing data from blood-derived DNA of 3421 biobank subjects. Any herpes viral DNA was detected in only two (0.37%) PE and one (0.14%) control sample (OR 2.74, 95% CI 0.25-30.4). One PE sample contained iciHHV-6B and another HHV-7 DNA. The control's DNA was of iciHHV-6B; the fetus having growth restriction and preterm birth without PE diagnosis. Placentas showed no herpesviruses. In the biobank data, 3 of 3421 subjects (0.08%) had low level HHV-6B but no iciHHV-6. While iciHHV-6 proved extremely rare, both fetuses with iciHHV-6B were growth-restricted, preterm, and from a pregnancy with maternal hypertension. Our findings suggest that human herpesviruses are not a significant cause of PE, whereas iciHHV-6 may pose some fetal risk.


Assuntos
Herpesvirus Humano 6 , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/virologia , Pré-Eclâmpsia/epidemiologia , Adulto , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Estudos de Coortes , Sangue Fetal/virologia , Finlândia/epidemiologia , DNA Viral/genética , DNA Viral/sangue , Placenta/virologia , Herpesviridae/genética
5.
Vopr Virusol ; 69(2): 134-150, 2024 May 06.
Artigo em Russo | MEDLINE | ID: mdl-38843020

RESUMO

INTRODUCTION: SARS-CoV-2 infection causes immune disorders that create conditions for the reactivation of human herpesviruses (HHVs). However, the estimates of the HHVs effect on the course and outcome of COVID-19 are ambiguous. Аim - to study the possible relationship between the HHV reactivation and the adverse outcome of COVID-19. MATERIALS AND METHODS: Postmortem samples from the brain, liver, spleen, lymph nodes and lungs were obtained from 59 patients treated at the Moscow Infectious Diseases Hospital No.1 in 2021-2023. The group 1 comprised 39 patients with fatal COVID-19; group 2 (comparison group) included 20 patients not infected with SARS-CoV-2 who died from various somatic diseases. HHV DNA and SARS-CoV-2 RNA were determined by PCR. RESULTS: HHV DNA was found in autopsy samples from all patients. In group 1, EBV was most often detected in lymph nodes (94%), HHV-6 in liver (68%), CMV in lymph nodes (18%), HSV in brain (16%), VZV in lung and spleen (3% each). The detection rates of HHVs in both groups was similar. Important differences were found in viral load. In patients with COVID-19, the number of samples containing more than 1,000 copies of HHV DNA per 100,000 cells was 52.4%, in the comparison group - 16.6% (p < 0.002). An association has been established between the reactivation of HSV and HHV-6 and the severity of lung damage. Reactivation of EBV correlated with increased levels of liver enzymes. CONCLUSION: Reactivation of HHVs in patients with fatal COVID-19 was associated with severe lung and liver damages, which indicates a link between HHV reactivation and COVID-19 deaths.


Assuntos
Autopsia , COVID-19 , DNA Viral , Infecções por Herpesviridae , Herpesviridae , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/mortalidade , COVID-19/diagnóstico , COVID-19/patologia , Feminino , Masculino , DNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Idoso , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/mortalidade , Adulto , Pulmão/virologia , Pulmão/patologia , Ativação Viral , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Moscou , Carga Viral , Linfonodos/virologia , Linfonodos/patologia , Idoso de 80 Anos ou mais , Baço/virologia , Baço/patologia
6.
J Fish Dis ; 47(8): e13960, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708552

RESUMO

In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Herpesviridae/isolamento & purificação , Herpesviridae/genética , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Carpas/virologia , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo
7.
Eur Arch Otorhinolaryngol ; 281(8): 4201-4211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38758242

RESUMO

PURPOSE: Sinonasal lymphoma (SL) is a rare lymphatic neoplasm of the nasal cavities, paranasal sinuses and nasopharynx. Whereas some risk factors for SL subtypes have been identified, their aetiology is unknown. Along with other predisposing factors, the viral association of lymphomas, such as Epstein-Barr virus (EBV) and Burkitt and Hodgkin lymphomas, is well-established. Modern molecular biology techniques have enabled the discovery of novel human viruses, exemplified by the protoparvovirus cutavirus (CuV), associated with cutaneous T-cell lymphoma. These findings, and the anatomical location of the sinonasal tract with its rich microbiome and infectious agents, justify in-depth studies among SL. METHODS: We analysed the presence of 20 viruses of Orthoherpesviridae, Parvoviridae, and Polyomaviridae by qPCR in 24 SL tumours. We performed RNAscope in situ hybridisation (RISH) to localize the viruses. Parvovirus-specific IgG was analysed by enzyme immunoassay and targeted next-generation sequencing (NGS) was applied to detect CuV in plasma. RESULTS: We detected viral DNA in 15/24 (63%) tumours; nine of EBV, six of human herpesvirus (HHV) -7, four each of HHV-6B and parvovirus B19, two of cytomegalovirus, and one each of CuV and Merkel-cell polyomavirus. We found tumours with up to four viruses per tumour, and localized CuV and EBV DNAs by RISH. Two of the ten plasma samples exhibited CuV IgG, and one plasma sample demonstrated CuV viremia by NGS. CONCLUSION: Viruses were frequent findings in SL. The EBV detection rate was high in diffuse large B-cell lymphoma, and co-detections with other viruses were prevalent.


Assuntos
Herpesviridae , Neoplasias dos Seios Paranasais , Polyomavirus , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias dos Seios Paranasais/virologia , Idoso , Feminino , Polyomavirus/isolamento & purificação , Polyomavirus/genética , Herpesviridae/isolamento & purificação , Herpesviridae/genética , Adulto , Idoso de 80 Anos ou mais , DNA Viral/análise , Hibridização In Situ
8.
Rev Med Virol ; 34(3): e2550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801246

RESUMO

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Assuntos
Doença de Alzheimer , Infecções por Herpesviridae , Herpesviridae , Humanos , Doença de Alzheimer/virologia , Doença de Alzheimer/imunologia , Herpesviridae/patogenicidade , Herpesviridae/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais
9.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690731

RESUMO

Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.


Assuntos
Vacinas contra Herpesvirus , Humanos , Vacinas contra Herpesvirus/imunologia , Vacinas contra Herpesvirus/uso terapêutico , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/imunologia , Animais , Herpesviridae/imunologia , Ativação Viral/imunologia , Citomegalovirus/imunologia
10.
PLoS One ; 19(5): e0303475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820366

RESUMO

INTRODUCTION: Koi herpesvirus disease (KHVD) is attributed to cyprinid herpesvirus-3 (CyHV-3) and predominantly affects common carp and ornamental koi carp (Cyprinus carpio). This viral infection leads to substantial morbidity and mortality among these fish species. This study aimed to confirm the presence of KHVD in the Kurdistan region of Iraq by employing clinical and optimized molecular assays on fish populations experiencing high mortality among common carp in carp farms. METHODOLOGY: The present research was conducted in the Kalar district, situated at the heart of Garmian province in Iraqi Kurdistan. four samples from common carp fish farms were received by our laboratory. These samples specifically displaying clinical signs associated with koi herpesvirus (KHV) infection, were subjected to clinical examinations, and PCR assay in addition to sequence analysis. RESULTS: The results of the current study revealed that the observed clinical signs, particularly gill necrosis, skin lesions, and sunken eyes, closely resembled the clinical signs of KHVD in common carp fish. In addition, PCR, nested PCR, and sequence analysis assay detected appropriate DNA fragments of the CyHV-3 major capsid protein gene confirming the first detection of KHVD in common carp fish in the Kurdistan region of Iraq. CONCLUSION: In this study, the results confirm the detection of KHVD in the Kurdistan region, Iraq, for the first time. This study revealed that CyHV-3 was responsible for KHVD-related signs and symptoms. Based on these results, it is strongly recommended that comprehensive studies be initiated to investigate the prevalence and distribution of CyHV-3.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Iraque/epidemiologia , Carpas/virologia , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Reação em Cadeia da Polimerase , DNA Viral/genética
11.
Sci Rep ; 14(1): 11783, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782944

RESUMO

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Carpas/virologia , Carpas/imunologia , Herpesviridae/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Vacinas Virais/imunologia , Epitopos/imunologia , Epitopos/química , Biologia Computacional/métodos , Vacinas contra Herpesvirus/imunologia , Imunoinformática
12.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692868

RESUMO

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Assuntos
Herpesviridae , Humanos , Herpesviridae/fisiologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , Genoma Viral , Capsídeo/metabolismo , Replicação Viral
13.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656275

RESUMO

Molluscan herpesviruses cause disease in species of major importance to aquaculture and are the only known herpesviruses to infect invertebrates, which lack an adaptive immune system. Understanding the evolution of malacoherpesviruses in relation to their hosts will likely require comparative genomic studies on multiple phylogenetic scales. Currently, only two malacoherpesvirus species have genomes that have been fully assembled, which limits the ability to perform comparative genomic studies on this family of viruses. In the present study, we fully assemble a herpesvirus from Illumina and Nanopore sequence data that were previously used to assemble the genome of the gastropod Babylonia areolata. We tentatively assign this novel herpesvirus to the genus Aurivirus within the family Malacoherpesviridae based on a phylogenetic analysis of DNA polymerase. While structurally similar to other malacoherpesvirus genomes, a synteny analysis of the novel herpesvirus with another Aurivirus species indicates that genomic rearrangements might be an important process in the evolution of this genus. We anticipate that future complete assemblies of malacoherpesviruses will be a valuable resource in comparative herpesvirus research.


Assuntos
Gastrópodes , Genoma Viral , Herpesviridae , Filogenia , Animais , Gastrópodes/virologia , Herpesviridae/genética , Herpesviridae/classificação , Sequenciamento Completo do Genoma/métodos , Genômica/métodos , Sintenia
14.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669242

RESUMO

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Assuntos
Apoptose , Herpesvirus Suídeo 1 , Mitocôndrias , Pseudorraiva , Proteínas Virais , Animais , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/patogenicidade , Herpesviridae/genética , Replicação Viral/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Virulência
15.
J Virol Methods ; 327: 114941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599248

RESUMO

Emerging infectious diseases are a threat that contributes to the decline of global chelonian species. Herpesviruses are among the most impactful pathogens described in chelonians and are frequently associated with a range of presentations across hosts with the potential for severe morbidity and mortality. Trachemys herpesvirus 1 (TrHV1) has been reported in red-eared and yellow-bellied sliders (Trachemys scripta elegans and Trachemys scripta scripta, respectively) but is largely understudied. Invasive red-eared sliders may serve as a reservoir for transmission to sympatric native species. This study aimed to develop a sensitive and specific quantitative real-time PCR (qPCR) assay for the detection of TrHV1 DNA to aid in the characterization of the epidemiology of this virus in aquatic turtles. Two TaqMan-MGB FAM-dye labeled primer-probe sets were designed and evaluated using plasmid dilutions. The higher performing assay was specific for TrHV1 DNA and had a linear dynamic range of 1.0 × 107 to 1.0 × 101 copies per reaction with an R2 of 0.999, slope of -3.386, and efficiency of 97.39%. The limit of detection was 101 copies per reaction, and there was no loss of reaction efficiency in the presence of TrHV1-negative chelonian oral-cloacal DNA. Overall, the Trachemys herpesvirus 1 assay meets established criteria for acceptable qPCR assays and will be a valuable tool in characterizing the epidemiology of Trachemys herpesvirus 1 in chelonians.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Tartarugas , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tartarugas/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Herpesviridae/classificação , DNA Viral/genética , DNA Viral/isolamento & purificação , Primers do DNA/genética
16.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642725

RESUMO

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Carpas/imunologia , Carpas/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixe-Zebra
17.
Viruses ; 16(4)2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675914

RESUMO

Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.


Assuntos
Células Endoteliais , Síndrome de Fadiga Crônica , Infecções por Herpesviridae , Humanos , Células Endoteliais/virologia , Síndrome de Fadiga Crônica/virologia , Síndrome de Fadiga Crônica/fisiopatologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Latência Viral , Síndrome de COVID-19 Pós-Aguda/patologia , Síndrome de COVID-19 Pós-Aguda/fisiopatologia
18.
Front Immunol ; 15: 1329820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590526

RESUMO

The immune system of Asian elephants (Elephas maximus) is poorly studied, compared to that of livestock, rodents or humans. The innate immune response has become a focus of interest in relation to Elephant endotheliotropic herpesviruses (EEHVs). EEHVs cause a fatal hemorrhagic disease (EEHV-HD) and are a significant threat to captive Asian elephant populations worldwide. Similar to other herpesvirus infections, nearly all animals become infected, but only some develop disease. As progression to EEHV-HD is often acute, a robust innate immune response is crucial to control EEHV infections. This is invariably true of the host in the first instance, but it can also potentially be modulated by intervention strategies. Here, two immunostimulant veterinary medicinal products, authorized for use in domestic species, were tested for their ability to induce innate anti-viral immune responses in Asian elephant blood cells. Sequence data were obtained for a range of previously unidentified Asian elephant immune genes, including C-X-C motif chemokine ligand 10 (CXCL10), interferon stimulated gene 15 (ISG15) and myxovirus GTPase 1 (Mx1), and were employed in the design of species-specific qPCR assays. These assays were subsequently used in analyses to determine fold changes in gene expression over a period of 24 hours. This study demonstrates that both immunostimulant medications are capable of inducing significant innate anti-viral immune responses which suggests that both could be beneficial in controlling EEHV infections in Asian elephants.


Assuntos
Elefantes , Infecções por Herpesviridae , Herpesviridae , Humanos , Animais , Ovinos , Elefantes/genética , DNA Bacteriano , Células Sanguíneas , Imunidade Inata , Plasmídeos , Imunização , Adjuvantes Imunológicos , Expressão Gênica
20.
Open Vet J ; 14(1): 534-544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633187

RESUMO

Background: Equine herpesvirus type 1 (EHV-1) is a major cause of abortion and respiratory disease. Equine herpesvirus type 4 (EHV-4), on the other hand, is exclusively associated with respiratory disease in horse populations worldwide, particularly in Egypt and Arabian countries. Aim: This study aims to investigate the circulation of EHV-1 and EHV-4 in the Arabian horse population through molecular detection and genetic characterization of EHV-1 and/or EHV-4 that may threaten the stability of horse industry. Methods: A total of 80 samples including 50 nasal swabs, 10 vaginal swabs and 20 whole blood samples were collected from vaccinated and registered pure-bred Arabian adult horses from different studs in the governorates of northern Egypt (Cairo, Dakahlyia and Qalyubia) from 2021 to 2022. The collected samples were screened using consensus PCR for detection of EHVs using specific primers targeting DNA polymerase gene. The positive samples were subjected to conventional PCR for detection of EHV-1 and/or EHV-4using specific primers targeting glycoprotein (gB) gene. EHV-1 and EHV-4 amplicons were partially sequenced and phylogenetically analyzed using Sanger method. Results: Consensus PCR revealed that 48 out of 80 samples were positive for EHVs with percentage of 60%. Typing of the selected positive samples using conventional PCR showed that 29 out of 80 were positive for EHV-1 with percentage 36.25%, while 24 out of 80 samples were positive for EHV-4 with percentage 30%. Mixed infections with both viruses were detected in five samples. The amplified products were sequenced using Sanger method and submitted to GenBank under accession number OM362231MG-1 for EHV-1 strain and OM362232 MG-4 for EHV-4 strain. Sequence analysis and alignments of the amplified fragments of the EHV-1 and EHV-4 glycoprotein B (gB) gene to that of GenBank-derived reference strains revealed a high degree of similarity. According to the phylogenetic tree, the obtained sequences of EHV-1 and 4 in the current study showed homogeneity with local Egyptian and foreign EHV-1 and 4 strains and heterogeneity with EHV-2 and 5. Conclusion: The current investigation showed that molecular methods are appropriate assays for an efficient and accurate diagnosis of EHVs. Furthermore, it supports earlier research findings about the prevalence of EHV-1 and 4 in Arabian horse populations in Egypt.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Doenças dos Cavalos , Gravidez , Feminino , Cavalos , Animais , Egito , Infecções por Herpesviridae/veterinária , Filogenia , Herpesviridae/genética , Doenças dos Cavalos/diagnóstico , Glicoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA