Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88.278
Filtrar
1.
Methods Mol Biol ; 2816: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977583

RESUMO

The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.


Assuntos
Metabolismo dos Lipídeos , Doenças Musculoesqueléticas , Transdução de Sinais , Animais , Humanos , Osso e Ossos/metabolismo , Eicosanoides/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculoesqueléticas/metabolismo , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo
2.
Proc Biol Sci ; 291(2026): 20232915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981519

RESUMO

Archaeological studies of pre-historic Arctic cultures are often limited to artefacts and architecture; such records may be incomplete and often do not provide a continuous record of past occupation. Here, we used lake sediment archives to supplement archaeological evidence to explore the history of Thule and Dorset populations on Somerset Island, Nunavut (Canada). We examined biomarkers in dated sediment cores from two ponds adjacent to abandoned Thule settlements (PaJs-3 and PaJs-13) and compared these to sediment cores from two ponds without past human occupation. Coprostanol and epicoprostanol, δ15N measurements, sedimentary chlorophyll a and the ratio of diatom valves to chrysophyte cysts were elevated in the dated sediment profiles at both sites during Thule and Dorset occupations. Periods of pronounced human impact during the Thule occupation of the site were corroborated by 14C-dated caribou bones found at both sites that identified intense caribou hunting between ca 1185 and 1510 CE. Notably, these sediment core data show evidence of the Dorset occupation from ca 200 to 500 CE at sites where archaeological evidence was heretofore lacking. We highlight the utility of lake sediments in assisting archaeological studies to better establish the timings, peak occupations and even lifestyle practices of the Dorset and Thule Arctic peoples.


Assuntos
Arqueologia , Biomarcadores , Osso e Ossos , Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Regiões Árticas , Osso e Ossos/química , Animais , Humanos , Biomarcadores/análise , Nunavut , Rena , Lagos/química
3.
Front Endocrinol (Lausanne) ; 15: 1417191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974581

RESUMO

Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.


Assuntos
Osteoartrite , Osteoporose , Tocotrienóis , Tocotrienóis/uso terapêutico , Tocotrienóis/farmacologia , Humanos , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
4.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993575

RESUMO

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Assuntos
Dentina , Odontoblastos , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais , Fator de Crescimento Transformador beta , Dentina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Odontoblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Camundongos , Dente/metabolismo , Osso e Ossos/metabolismo , Microtomografia por Raio-X , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Knockout
5.
Theranostics ; 14(10): 3859-3899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994021

RESUMO

Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.


Assuntos
Osseointegração , Osteoporose , Humanos , Osteoporose/terapia , Animais , Espécies Reativas de Oxigênio/metabolismo , Regeneração Óssea , Autofagia , Osso e Ossos/metabolismo , Apoptose , Bioengenharia/métodos
6.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000517

RESUMO

Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).


Assuntos
Envelhecimento , Osso e Ossos , Senescência Celular , Inflamação , Humanos , Senescência Celular/genética , Inflamação/genética , Inflamação/metabolismo , Envelhecimento/genética , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Animais , Fenótipo Secretor Associado à Senescência/genética , Transdução de Sinais
7.
Commun Biol ; 7(1): 892, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039245

RESUMO

Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Knockout , Osteoblastos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Osteoblastos/metabolismo , Feminino , Osso e Ossos/metabolismo , Diferenciação Celular , Osteoclastos/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Osteoporose/genética , Osteoporose/metabolismo
8.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
9.
BMC Microbiol ; 24(1): 270, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033146

RESUMO

BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.


Assuntos
Biofilmes , Infecções Relacionadas à Prótese , Titânio , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas à Prótese/microbiologia , Humanos , Aderência Bacteriana , Propionibacteriaceae/fisiologia , Propionibacteriaceae/genética , Propionibacteriaceae/efeitos dos fármacos , Próteses e Implantes/microbiologia , Osso e Ossos/microbiologia , Plásticos , Ligas , Propriedades de Superfície
10.
Mol Biol Rep ; 51(1): 838, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042226

RESUMO

BACKGROUND: Bioglass materials have gained significant attention in the field of tissue engineering due to their osteoinductive and biocompatible properties that promote bone cell differentiation. In this study, a novel composite scaffold was developed using a sol-gel technique to combine bioglass (BG) 58 S with a poly L-lactic acid (PLLA). METHODS AND RESULTS: The physiochemical properties, morphology, and osteoinductive potential of the scaffolds were investigated by X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results showed that the SiO2-CaO-P2O5 system was successfully synthesized by the sol-gel method. The PLLA scaffolds containing BG was found to be osteoinductive and promoted mineralization, as demonstrated by calcium deposition assay, upregulation of alkaline phosphatase enzyme activity, and Alizarin red staining data. CONCLUSIONS: These in vitro studies suggest that composite scaffolds incorporating hBMSCs are a promising substitute material to be implemented in bone tissue engineering. The PLLA/BG scaffolds promote osteogenesis and support the differentiation of bone cells, such as osteoblasts, due to their osteoinductive properties.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Cerâmica , Osteogênese , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Poliésteres/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Difração de Raios X , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Fosfatase Alcalina/metabolismo , Microscopia Eletrônica de Varredura
11.
Nutrients ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999757

RESUMO

The role of bone and muscle as endocrine organs may be important contributing factors for children's growth and development. Myokines, secreted by muscle cells, play a role in regulating bone metabolism, either directly or indirectly. Conversely, markers of bone metabolism, reflecting the balance between bone formation and bone resorption, can also influence myokine secretion. This study investigated a panel of serum myokines and their relationships with bone metabolism markers in children following vegetarian and omnivorous diets. A cohort of sixty-eight healthy prepubertal children, comprising 44 vegetarians and 24 omnivores, participated in this study. Anthropometric measurements, dietary assessments, and biochemical analyses were conducted. To evaluate the serum concentrations of bone markers and myokines, an enzyme-linked immunosorbent assay (ELISA) was used. The studied children did not differ regarding their serum myokine levels, except for a higher concentration of decorin in the vegetarian group (p = 0.020). The vegetarians demonstrated distinct pattern of bone metabolism markers compared to the omnivores, with lower levels of N-terminal propeptide of type I procollagen (P1NP) (p = 0.001) and elevated levels of C-terminal telopeptide of type I collagen (CTX-I) (p = 0.018). Consequently, the P1NP/CTX-I ratio was significantly decreased in the vegetarians. The children following a vegetarian diet showed impaired bone metabolism with reduced bone formation and increased bone resorption. Higher levels of decorin, a myokine involved in collagen fibrillogenesis and essential for tissue structure and function, may suggest a potential compensatory mechanism contributing to maintaining bone homeostasis in vegetarians. The observed significant positive correlations between myostatin and bone metabolism markers, including P1NP and soluble receptor activator of nuclear factor kappa-B ligand (sRANKL), suggest an interplay between muscle and bone metabolism, potentially through the RANK/RANKL/OPG signaling pathway.


Assuntos
Biomarcadores , Osso e Ossos , Dieta Vegetariana , Humanos , Criança , Biomarcadores/sangue , Masculino , Feminino , Osso e Ossos/metabolismo , Vegetarianos , Dieta , Citocinas/sangue , Colágeno Tipo I/sangue , Miocinas
12.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999953

RESUMO

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Assuntos
Cerâmica , Nanopartículas , Poliésteres , Polimetil Metacrilato , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Poliésteres/química , Polimetil Metacrilato/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Nanopartículas/química , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Linhagem Celular
13.
Int J Nanomedicine ; 19: 6359-6376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946885

RESUMO

Background: Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods: Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results: The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion: Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.


Assuntos
Alginatos , Proteína Morfogenética Óssea 7 , Regeneração Óssea , Durapatita , Gelatina , Hidrogéis , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Alginatos/química , Alginatos/farmacologia , Animais , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Gelatina/química , Engenharia Tecidual/métodos , Hidrogéis/química , Hidrogéis/farmacologia , Durapatita/química , Durapatita/farmacologia , Osteogênese/efeitos dos fármacos , Ratos , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos Sprague-Dawley , Metacrilatos/química , Masculino , Humanos , Osso e Ossos/efeitos dos fármacos
14.
PLoS One ; 19(7): e0304074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976685

RESUMO

MIR125B, particularly its 5p strand, is apparently involved in multiple cellular processes, including osteoblastogenesis and osteoclastogenesis. Given that MIR125B is transcribed from the loci Mir125b1 and Mir125b2, three mature transcripts (MIR125B-5p, MIR125B1-3p, and MIR125B2-3p) are generated (MIR125B-5p is common to both); however, their expression profiles and roles in the bones remain poorly understood. Both primary and mature MIR125B transcripts were differentially expressed in various organs, tissues, and cells, and their expression patterns did not necessarily correlate in wild-type (WT) mice. We generated Mir125b2 knockout (KO) mice to examine the contribution of Mir125b2 to MIR125B expression profiles and bone phenotypes. Mir125b2 KO mice were born and grew normally without any changes in bone parameters. Interestingly, in WT and Mir125b2 KO, MIR125B-5p was abundant in the calvaria and bone marrow stromal cells. These results indicate that the genetic ablation of Mir125b2 does not impinge on the bones of mice, attracting greater attention to MIR125B-5p derived from Mir125b1. Future studies should investigate the conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2 in mice.


Assuntos
Osso e Ossos , Camundongos Knockout , MicroRNAs , Fenótipo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Osso e Ossos/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Crânio/metabolismo
15.
Naturwissenschaften ; 111(4): 38, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990382

RESUMO

The small pseudosuchian Benggwigwishingasuchus eremacarminis was found in Anisian (Middle Triassic) marine sediments. Neither the skeleton nor osteohistology or microanatomy shows any secondary aquatic adaptations, and a dominantly terrestrial lifestyle of this new taxon is evident. Bone tissue consists of a scaffold of parallel-fibered matrix, which is moderately vascularized by small, mainly longitudinal primary osteons. The innermost cortex is less densely vascularized and more highly organized. No parts of the cortex contain any woven bone. The cortex is regularly stratified by annual growth marks. Bone tissue and growth pattern indicate an adult individual that has had slow growth rates throughout its ontogeny. Tissue type, slow growth rate, and inferred low resting metabolic rate of Benggwigwishingasuchus are similar to that of crocodylomorphs but differ from that of Sillosuchus and Effigia, poposaurids to which Benggwigwishingasuchus is related based on phylogenetic analyses. However, according to current knowledge, growth rates in early archosaurs are more likely influenced by body size and environment than by phylogeny. Benggwigwishingasuchus is thus another example of unpredictable variability in growth rates within Triassic archosaurs.


Assuntos
Fósseis , Animais , Osso e Ossos/anatomia & histologia , Filogenia , Tamanho Corporal/fisiologia
16.
ACS Appl Bio Mater ; 7(7): 4270-4292, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950103

RESUMO

Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.


Assuntos
Materiais Biomiméticos , Regeneração Óssea , Microesferas , Nanofibras , Engenharia Tecidual , Humanos , Regeneração Óssea/efeitos dos fármacos , Nanofibras/química , Materiais Biomiméticos/química , Osteogênese/efeitos dos fármacos , Animais , Tamanho da Partícula , Osso e Ossos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Alicerces Teciduais/química
17.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963696

RESUMO

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.


Assuntos
Osso e Ossos , Encéfalo , Sistema Nervoso Simpático , Animais , Sistema Nervoso Simpático/fisiologia , Camundongos , Encéfalo/fisiologia , Encéfalo/metabolismo , Osso e Ossos/inervação , Osso e Ossos/fisiologia , Herpesvirus Suídeo 1/fisiologia
18.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000002

RESUMO

Bone is a unique type of mineralised connective tissue that can support and protect soft tissues, contain bone marrow, and allow movement [...].


Assuntos
Osso e Ossos , Humanos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Animais
19.
Int J Med Sci ; 21(9): 1672-1680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006845

RESUMO

Implants have always been within the interest of both clinicians and material scientists due to their places in reconstructive and prosthetics surgery. Excessive bone loss or resorption in some patients makes it difficult to design and manufacture the implants that bear the necessary loads to carry the final prosthetics. With this study; we tried to determine the minimum material thickness of the subperiosteal implants that can withstand the physiological forces. We have created a digital average bone structure based on actual patient data and designed different subperiosteal implants with 1, 1.5, and 2mm material thicknesses (M1, M2, M3) for this digital model. The designed implant models are subjected to 250 Newtons (N) of force, and the implant and bone are tested for the stress they are exposed to, the pressure they transmit to, and their mechanical strength with Finite Element Analysis with the physical parameters boot for the implant material and human bone. Results show us that under specific design parameters and thicknesses, the 1mm thickness design failed due to exceeding the yield stress limit of 415MPa with a 495,44MPa value. The thinnest implant showed plastic deformation and transmitted excessive forces, which may cause bone resorption due to residual stress. We determined that thinner subperiosteal implants down to 1.5mm that have the necessary material parameters for function and tissue support can be designed and manufactured with current technologies.


Assuntos
Análise de Elementos Finitos , Estresse Mecânico , Humanos , Próteses e Implantes , Fenômenos Biomecânicos , Osso e Ossos/cirurgia , Osso e Ossos/fisiologia , Teste de Materiais
20.
PLoS One ; 19(7): e0304956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39018301

RESUMO

The initial peopling of South America is a topic of intense archaeological debate. Among the most contentious issues remain the nature of the human-megafauna interaction and the possible role of humans, along with climatic change, in the extinction of several megamammal genera at the end of the Pleistocene. In this study, we present the analysis of fossil remains with cutmarks belonging to a specimen of Neosclerocalyptus (Xenarthra, Glyptodontidae), found on the banks of the Reconquista River, northeast of the Pampean region (Argentina), whose AMS 14C dating corresponds to the Last Glacial Maximum (21,090-20,811 cal YBP). Paleoenvironmental reconstructions, stratigraphic descriptions, absolute chronological dating of bone materials, and deposits suggest a relatively rapid burial event of the bone assemblage in a semi-dry climate during a wet season. Quantitative and qualitative analyses of the cut marks, reconstruction of butchering sequences, and assessments of the possible agents involved in the observed bone surface modifications indicate anthropic activities. Our results provide new elements for discussing the earliest peopling of southern South America and specifically for the interaction between humans and local megafauna in the Pampean region during the Last Glacial Maximum.


Assuntos
Osso e Ossos , Extinção Biológica , Fósseis , Animais , Argentina , Osso e Ossos/anatomia & histologia , Humanos , Xenarthra/anatomia & histologia , Paleontologia , Arqueologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA