Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.656
Filtrar
1.
Front Immunol ; 15: 1392043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962015

RESUMO

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Vivax , Camundongos Endogâmicos BALB C , Plasmodium vivax , Proteínas de Protozoários , Animais , Plasmodium vivax/imunologia , Plasmodium vivax/genética , Camundongos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Malária Vivax/imunologia , Malária Vivax/prevenção & controle , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Feminino , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Modelos Animais de Doenças , Adjuvantes Imunológicos , Imunogenicidade da Vacina , Antígenos de Superfície
2.
Vopr Virusol ; 69(3): 219-230, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996371

RESUMO

INTRODUCTION: Specific prevention of a number of infectious diseases has been introduced into the vaccination schedule. The production of immunoprophylactic drugs, in order to establish standard properties, including safety and specific effectiveness, requires strict adherence to manufacturing regulations, and the reliability of the results obtained requires monitoring of these parameters. The specific effectiveness of vaccine preparations is standardized according to the indicators of stimulation of specific antibody response formed in the body of vaccinated model biological objects. OBJECTIVE: Determination of the immune reactivity of white mice to vaccination with the QazVac vaccine to establish the possibility of using them as a biological model in assessing the immunogenicity of the vaccine instead of Syrian hamsters. MATERIALS AND METHODS: The immune reactivity of model animals was assessed by the seroconversion rate, dynamics of antibody titers to the SARS-CoV-2 virus formed in the body after vaccination with the test vaccine. In the case of seropositivity of animals before administration of vaccine or placebo, the level of immune reactivity was calculated by the difference in antibody titers between control and vaccinated animals or by the difference in antibody titers before and after immunization. Specific antibodies were detected and their titer was determined using a neutralization reaction. RESULTS: The research results showed that the tested biological models had approximately the same immune reactivity to the administration of the QazVac vaccine, confirmed by the level and dynamics of antibody titers. When analyzing the fold increase in antibody titers in comparison to those of control animals, Syrian hamsters were more reactive compared to mice. But SPF white mice were standardized in their lack of the immune reactivity to SARS-CoV-2 virus before the immunization. CONCLUSION: The data obtained indicate that the immune reactivity of white mice to the administration of the QazVac vaccine in terms of the rate and dynamics of the formation of virus-neutralizing antibodies is approximately equivalent to the immune reactivity of Syrian hamsters. Before immunization with the vaccine, SPF white mice, in contrast to Syrian hamsters, do not have humoral immunity specific to the SARS-CoV-2 virus. The immune reactivity equivalent to that observed of Syrian hamsters and the absence of antibodies to the SARS-CoV-2 virus at a baseline indicate the superiority of the use of white mice in assessing the immunogenicity of vaccines against COVID-19 and/or obtaining specific factors of humoral immunity.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados , Animais , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Cricetinae , Mesocricetus , Imunogenicidade da Vacina , Humanos , Modelos Animais de Doenças , Imunidade Humoral , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia
3.
Trials ; 25(1): 485, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020446

RESUMO

BACKGROUND: Immunocompromised hosts (ICH) experience more breakthrough infections and worse clinical outcomes following infection with COVID-19 than immunocompetent people. Prophylactic monoclonal antibody therapies can be challenging to access, and escape variants emerge rapidly. Immunity conferred through vaccination remains a central prevention strategy for COVID-19. COVID-19 vaccines do not elicit optimal immunity in ICH but boosting, through additional doses of vaccine improves humoral and cellular immune responses. This trial aims to assess the immunogenicity and safety of different COVID-19 vaccine booster strategies against SARS-CoV-2 for ICH in Australia. METHODS: Bringing optimised COVID-19 vaccine schedules to immunocompromised populations (BOOST-IC) is an adaptive randomised trial of one or two additional doses of COVID-19 vaccines 3 months apart in people living with HIV, solid organ transplant (SOT) recipients, or those who have haematological malignancies (chronic lymphocytic leukaemia, non-Hodgkin lymphoma or multiple myeloma). Key eligibility criteria include having received 3 to 7 doses of Australian Therapeutic Goods Administration (TGA)-approved COVID-19 vaccines at least 3 months earlier, and having not received SARS-CoV-2-specific monoclonal antibodies in the 3 months prior to receiving the study vaccine. The primary outcome is the geometric mean concentration of anti-spike SARS-CoV-2 immunoglobulin G (IgG) 28 days after the final dose of the study vaccine. Key secondary outcomes include anti-spike SARS-CoV-2 IgG titres and the proportion of people seroconverting 6 and 12 months after study vaccines, local and systemic reactions in the 7 days after vaccination, adverse events of special interest, COVID-19 infection, mortality and quality of life. DISCUSSION: This study will enhance the understanding of COVID-19 vaccine responses in ICH, and enable the development of safe, and optimised vaccine schedules in people with HIV, SOT, or haematological malignancy. TRIAL REGISTRATION: ClinicalTrials.gov NCT05556720. Registered on 23rd August 2022.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Esquemas de Imunização , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2/imunologia , Imunogenicidade da Vacina , Ensaios Clínicos Controlados Aleatórios como Assunto , Imunização Secundária , Austrália , Adulto , Fatores de Tempo
4.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2150-2161, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044581

RESUMO

This study aims to develop an effective bivalent subunit vaccine that is promising to prevent both porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV). The receptor-binding domains (RBDs) of PDCoV and PEDV were fused and cloned into the eukaryotic expression vector pCDNA3.1(+). The fusion protein PDCoV-RBD-PEDV-RBD (pdRBD-peRBD) was expressed by the ExpiCHOTM expression system and purified. Mice were immunized with the fusion protein at three different doses (10, 20, and 30 µg). The humoral immune response and cellular immune response induced by the fusion protein were evaluated by ELISA and flow cytometry. The neutralization titers of the serum of immunized mice against PDCoV and PEDV were determined by the microneutralization test. The results showed that high levels of IgG antibodies were induced in the three different dose groups after booster immunization, and there was no significant difference in the antibody level between different dose groups, indicating that the immunization dose of 10 µg could achieve the fine immune effect. The results of flow cytometry showed that the immunization groups demonstrated increased proportion of CD3+CD4+ T cells and decreased proportion of CD3+CD8+ T cells, which was consistent with the expectation about the humoral immune response induced by the subunit vaccine. At the same time, the levels of interleukin (IL)-2, IL-4, and interferon (IFN)-γ in the serum were determined. The results showed that the fusion protein induced both humoral immune effect and cellular immune response. The results of the neutralization test showed that the antibody induced by 10 µg fusion protein neutralized both PDCoV and PEDV in vitro, with the titers of 1:179.25 and 1:141.21, respectively. The above results suggested that the pdRBD-peRBD could induce a high level of humoral immune response at a dose of 10 µg, and the induced antibody could neutralize both PDCoV and PEDV. Therefore, the fusion protein pdRBD-peRBD is expected to be an effective subunit vaccine that can simultaneously prevent PDCoV and PEDV.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Proteínas Recombinantes de Fusão , Vacinas Virais , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Camundongos , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Deltacoronavirus/imunologia , Deltacoronavirus/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Camundongos Endogâmicos BALB C , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Domínios Proteicos , Imunogenicidade da Vacina , Imunidade Humoral
5.
Health Technol Assess ; 28(34): 1-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046101

RESUMO

Background: Vaccination of infants with pneumococcal conjugate vaccines is recommended by the World Health Organization. Evidence is mixed regarding the differences in immunogenicity and efficacy of the different pneumococcal vaccines. Objectives: The primary objective was to compare the immunogenicity of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. The main secondary objective was to compare the seroefficacy of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. Methods: We searched the Cochrane Library, EMBASE, Global Health, MEDLINE, ClinicalTrials.gov and trialsearch.who.int up to July 2022. Studies were eligible if they directly compared either pneumococcal conjugate vaccine-7, pneumococcal conjugate vaccine-10 or pneumococcal conjugate vaccine-13 in randomised trials of children under 2 years of age, and provided immunogenicity data for at least one time point. Individual participant data were requested and aggregate data used otherwise. Outcomes included the geometric mean ratio of serotype-specific immunoglobulin G and the relative risk of seroinfection. Seroinfection was defined for each individual as a rise in antibody between the post-primary vaccination series time point and the booster dose, evidence of presumed subclinical infection. Each trial was analysed to obtain the log of the ratio of geometric means and its standard error. The relative risk of seroinfection ('seroefficacy') was estimated by comparing the proportion of participants with seroinfection between vaccine groups. The log-geometric mean ratios, log-relative risks and their standard errors constituted the input data for evidence synthesis. For serotypes contained in all three vaccines, evidence could be synthesised using a network meta-analysis. For other serotypes, meta-analysis was used. Results from seroefficacy analyses were incorporated into a mathematical model of pneumococcal transmission dynamics to compare the differential impact of pneumococcal conjugate vaccine-10 and pneumococcal conjugate vaccine-13 introduction on invasive pneumococcal disease cases. The model estimated the impact of vaccine introduction over a 25-year time period and an economic evaluation was conducted. Results: In total, 47 studies were eligible from 38 countries. Twenty-eight and 12 studies with data available were included in immunogenicity and seroefficacy analyses, respectively. Geometric mean ratios comparing pneumococcal conjugate vaccine-13 versus pneumococcal conjugate vaccine-10 favoured pneumococcal conjugate vaccine-13 for serotypes 4, 9V and 23F at 1 month after primary vaccination series, with 1.14- to 1.54-fold significantly higher immunoglobulin G responses with pneumococcal conjugate vaccine-13. Risk of seroinfection prior to the time of booster dose was lower for pneumococcal conjugate vaccine-13 for serotype 4, 6B, 9V, 18C and 23F than for pneumococcal conjugate vaccine-10. Significant heterogeneity and inconsistency were present for most serotypes and for both outcomes. Twofold higher antibody after primary vaccination was associated with a 54% decrease in risk of seroinfection (relative risk 0.46, 95% confidence interval 0.23 to 0.96). In modelled scenarios, pneumococcal conjugate vaccine-13 or pneumococcal conjugate vaccine-10 introduction in 2006 resulted in a reduction in cases that was less rapid for pneumococcal conjugate vaccine-10 than for pneumococcal conjugate vaccine-13. The pneumococcal conjugate vaccine-13 programme was predicted to avoid an additional 2808 (95% confidence interval 2690 to 2925) cases of invasive pneumococcal disease compared with pneumococcal conjugate vaccine-10 introduction between 2006 and 2030. Limitations: Analyses used data from infant vaccine studies with blood samples taken prior to a booster dose. The impact of extrapolating pre-booster efficacy to post-booster time points is unknown. Network meta-analysis models contained significant heterogeneity which may lead to bias. Conclusions: Serotype-specific differences were found in immunogenicity and seroefficacy between pneumococcal conjugate vaccine-13 and pneumococcal conjugate vaccine-10. Higher antibody response after vaccination was associated with a lower risk of subsequent infection. These methods can be used to compare the pneumococcal conjugate vaccines and optimise vaccination strategies. For future work, seroefficacy estimates can be determined for other pneumococcal vaccines, which could contribute to licensing or policy decisions for new pneumococcal vaccines. Study registration: This study is registered as PROSPERO CRD42019124580. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 17/148/03) and is published in full in Health Technology Assessment; Vol. 28, No. 34. See the NIHR Funding and Awards website for further award information.


Pneumococcal disease is a serious illness caused by a bacterial infection that can result in death. Children in the United Kingdom receive a vaccine to prevent this disease that protects against 13 different types of pneumococcal diseases. It is very effective, but other vaccines are also available, such as one that contains 10 types of pneumococcal diseases. Vaccines in the United Kingdom are bought by the government and the choice of which vaccine to provide is based on the cost of the vaccine as well as the benefits to our health. However, there is very little information comparing different vaccines and it is often assumed they are the same. We did a large analysis combining all studies of the two main licensed pneumococcal vaccines to determine which vaccine provides better protection against infection and how this affects costs. We used information from studies published in medical journals, and also data from studies done by the companies that own the vaccines. Our results showed that pneumococcal conjugate vaccine-13 vaccine provided better protection than pneumococcal conjugate vaccine-10 for 5 of the 10 serotypes that are contained in both vaccines. When we used these results to model what might have happened had either of these vaccines been introduced into the United Kingdom vaccination programme in 2006, we found that both vaccines caused a rapid decrease in the amount of disease, but that the decrease in disease was faster with pneumococcal conjugate vaccine-13 than pneumococcal conjugate vaccine-10. This resulted in 2808 cases of diseases prevented over a 25-year time frame with pneumococcal conjugate vaccine-13 compared with pneumococcal conjugate vaccine-10. Our methods can be used to compare other vaccines and we recommend this type of study be done in future when making decisions on vaccine product choice.


Assuntos
Metanálise em Rede , Infecções Pneumocócicas , Vacinas Pneumocócicas , Vacinas Conjugadas , Humanos , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Conjugadas/imunologia , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/imunologia , Lactente , Streptococcus pneumoniae/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Imunogenicidade da Vacina
6.
Virol J ; 21(1): 160, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039549

RESUMO

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Assuntos
Antígenos Virais , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Dinâmica Molecular , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas de Subunidades Antigênicas , Animais , Suínos , Rotavirus/imunologia , Rotavirus/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/química , Vacinas contra Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Simulação de Acoplamento Molecular , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Desenvolvimento de Vacinas , Imunogenicidade da Vacina
7.
Hum Vaccin Immunother ; 20(1): 2370605, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38977415

RESUMO

The outbreak of the COVID-19 has seriously affected the whole society, and vaccines were the most effective means to contain the epidemic. This paper aims to determine the top 100 articles cited most frequently in COVID-19 vaccines and to analyze the research status and hot spots in this field through bibliometrics, to provide a reference for future research. We conducted a comprehensive search of the Web of Science Core Collection database on November 29, 2023, and identified the top 100 articles by ranking them from highest to lowest citation frequency. In addition, we analyzed the year of publication, citation, author, country, institution, journal, and keywords with Microsoft Excel 2019 and VOSviewer 1.6.18. Research focused on vaccine immunogenicity and safety, vaccine hesitancy, and vaccination intention.


Assuntos
Bibliometria , Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Hesitação Vacinal/estatística & dados numéricos , Imunogenicidade da Vacina
8.
Virol J ; 21(1): 154, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978059

RESUMO

BACKGROUND: Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination. Thus, replacing Vero cells with human diploid cells may be a safer strategy. In this study, we developed a novel 2BS cell-adapted rabies virus strain and analysed its sequence, virulence and immunogenicity to determine its application potential as a human diploid cell inactivated vaccine. METHODS AND RESULTS: The 2BS cell-adapted rabies virus strain 2aG4-B40 was established by passage for 40 generations and selection of plaques in 2BS cells. RNA sequence analysis revealed that mutations in 2BS cell-adapted strains were not located at key sites that regulate the production of neutralizing antibodies or virulence in the aG strain (GQ412744.1). The gradual increase in virulence (remaining above 7.0 logLD50/ml from the 40th to 55th generation) and antigen further indicated that these mutations may increase the affinity of the adapted strains for human diploid cells. Identification tests revealed that the 2BS cell-adapted virus strain was neutralized by anti-rabies serum, with a neutralization index of 19,952. PrEP and PEP vaccination and the NIH test further indicated that the vaccine prepared with the 2aG4-B40 strain had high neutralizing antibody levels (2.24 to 46.67 IU/ml), immunogenicity (protection index 270) and potency (average 11.6 IU/ml). CONCLUSIONS: In this study, a 2BS cell-adapted strain of the 2aG4 rabies virus was obtained by passage for 40 generations. The results of sequencing analysis and titre determination of the adapted strain showed that the mutations in the adaptive process are not located at key sequence regions of the virus, and these mutations may enhance the affinity of the adapted strain for human diploid cells. Moreover, vaccines made from the adapted strain 2aG4-B40 had high potency and immunogenicity and could be an ideal candidate rabies virus strain for inactivated vaccine preparation.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina Antirrábica , Vírus da Raiva , Raiva , Vírus da Raiva/imunologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Animais , Vacina Antirrábica/imunologia , Vacina Antirrábica/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Raiva/prevenção & controle , Raiva/imunologia , Raiva/virologia , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Virulência , Vacinas de Produtos Inativados/imunologia , Células Vero , China , Camundongos , Linhagem Celular , Mutação , Feminino , Imunogenicidade da Vacina
9.
Hum Vaccin Immunother ; 20(1): 2370087, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38982712

RESUMO

The immune response to inactivated influenza vaccines (IIV) is influenced by multiple factors, including hemagglutinin content and egg-based manufacturing. Only two US-licensed vaccines are manufactured without egg passage: cell culture-based inactivated vaccine (ccIIV) and recombinant vaccine (RIV). We conducted a randomized open-label trial in central Wisconsin during the 2018-19 and 2019-20 seasons to compare immunogenicity of sequential vaccination. Participants 18-64 years old were randomized 1:1:1 to receive RIV, ccIIV or IIV in strata defined by number of influenza vaccine doses in the prior 3 years. They were revaccinated with the same product in year two. Paired serum samples were tested by hemagglutination inhibition against egg-adapted and cell-grown vaccine viruses. Serologic endpoints included geometric mean titer (GMT), mean fold rise, and percent seroconversion. There were 373 participants randomized and vaccinated in 2018-19; 332 were revaccinated in 2019-20. In 2018-19, RIV and ccIIV were not more immunogenic than IIV against A/H1N1. The post-vaccination GMT against the cell-grown 3C.2a A/H3N2 vaccine virus was higher for RIV vs IIV (p = .001) and RIV vs ccIIV (p = .001). The antibody response to influenza B viruses was similar across study arms. In 2019-20, GMT against the cell-grown 3C.3a A/H3N2 vaccine virus was higher for RIV vs IIV (p = .03) and for RIV vs ccIIV (p = .001). RIV revaccination generated significantly greater backboosting to the antigenically distinct 3C.2a A/H3N2 virus (2018-19 vaccine strain) compared to ccIIV or IIV. This study adds to the evidence that RIV elicits a superior immunologic response against A/H3N2 viruses compared to other licensed influenza vaccine products.


Assuntos
Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas de Produtos Inativados , Vacinas Sintéticas , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Adulto , Anticorpos Antivirais/sangue , Adulto Jovem , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Adolescente , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vírus da Influenza A Subtipo H3N2/imunologia , Wisconsin , Vacinação/métodos , Vírus da Influenza B/imunologia , Imunogenicidade da Vacina , Técnicas de Cultura de Células , Estados Unidos , Formação de Anticorpos/imunologia , Imunização Secundária/métodos , Ovos
10.
Egypt J Immunol ; 31(3): 95-112, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38995715

RESUMO

In this study, we aimed to evaluate the immunogenic profile of a chimeric DNA-based hepatitis C virus (HCV) vaccine candidate encoding the full-length viral core-E1-E2 (HCV-CE) fragment. The vaccine candidate was designed to uniformly express the HCV genotype 4 core-E1-E2 protein. The recombinant HCV-CE protein was bacterially expressed in C41 (DE3) cells, and then BALB/c mice were immunized with different combinations of DNA/DNA or DNA/protein prime/boost immunizations. The proper construction of our vaccine candidate was confirmed by specific amplification of the encoded fragments and basic local alignment search tool (BLAST) results of the nucleotide sequence, which revealed a high degree of similarity with several HCV serotypes/genotypes. The platform for bacterial expression was optimized to maximize the yield of the purified recombinant HCV-CE protein. The recombinant protein showed high specific antigenicity against the sera of HCV-infected patients according to the ELISA and western blot results. The predicted B- and T-cell epitopes showed high antigenic and interferon-γ (IFN-γ) induction potential, in addition to cross-genotype conservation and population coverage. The mice antisera further demonstrated a remarkable ability to capture 100% of the native viral antigens circulating in the sera of HCV patients, with no cross-reactivity detected in control sera. In conclusion, the proposed HCV vaccination strategy demonstrated promising potential regarding its safety, immunogenicity, and population coverage.


Assuntos
Hepacivirus , Hepatite C , Camundongos Endogâmicos BALB C , Vacinas de DNA , Vacinas contra Hepatite Viral , Animais , Hepacivirus/imunologia , Hepacivirus/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Camundongos , Vacinas contra Hepatite Viral/imunologia , Hepatite C/prevenção & controle , Hepatite C/imunologia , Humanos , Imunogenicidade da Vacina/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/genética , Feminino , Anticorpos Anti-Hepatite C/imunologia , Anticorpos Anti-Hepatite C/sangue
11.
JMIR Public Health Surveill ; 10: e49812, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39012087

RESUMO

Background: With the emergence of SARS-CoV-2 variants that have eluded immunity from vaccines and prior infections, vaccine shortages and vaccine effectiveness pose unprecedented challenges for governments in expanding booster vaccination programs. The fractionation of vaccine doses might be an effective strategy for helping society to face these challenges, as fractional doses may have efficacies comparable with those of the standard doses. Objective: This study aims to investigate the relationship between vaccine immunogenicity and protection and to project efficacies of fractional doses of vaccines for COVID-19 by using neutralizing antibody levels. Methods: In this study, we analyzed the relationship between in vitro neutralization levels and the observed efficacies against both asymptomatic infection and symptomatic infection, using data from 13 studies of 10 COVID-19 vaccines and from convalescent cohorts. We further projected efficacies for fractional doses, using neutralization as an intermediate variable, based on immunogenicity data from 51 studies included in our systematic review. Results: In comparisons with the convalescent level, vaccine efficacy against asymptomatic infection and symptomatic infection increased from 8.8% (95% CI 1.4%-16.1%) to 71.8% (95% CI 63%-80.7%) and from 33.6% (95% CI 23.6%-43.6%) to 98.6% (95% CI 97.6%-99.7%), respectively, as the mean neutralization level increased from 0.1 to 10 folds of the convalescent level. Additionally, mRNA vaccines provided the strongest protection, which decreased slowly for fractional dosing with dosages between 50% and 100% of the standard dose. We also observed that although vaccine efficacy increased with the mean neutralization level, the rate of this increase was slower for vaccine efficacy against asymptomatic infection than for vaccine efficacy against symptomatic infection. Conclusions: Our results are consistent with studies on immune protection from SARS-CoV-2 infection. Based on our study, we expect that fractional-dose vaccination could provide partial immunity against SARS-CoV-2 and its variants. Our findings provide a theoretical basis for the efficacy of fractional-dose vaccines, serving as reference evidence for implementing fractional dosing vaccine policies in areas facing vaccine shortages and thereby mitigating disease burden. Fractional-dose vaccination could be a viable vaccination strategy comparable to full-dose vaccination and deserves further exploration.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Eficácia de Vacinas , Humanos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/prevenção & controle , Eficácia de Vacinas/estatística & dados numéricos , SARS-CoV-2/imunologia , Imunogenicidade da Vacina , Anticorpos Antivirais/sangue
12.
Appl Microbiol Biotechnol ; 108(1): 424, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037584

RESUMO

Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Leptospirose , Lipoproteínas , Animais , Leptospirose/prevenção & controle , Leptospirose/imunologia , Lipoproteínas/imunologia , Lipoproteínas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Cricetinae , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Leptospira interrogans/imunologia , Leptospira interrogans/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinação , Imunidade Humoral , Leptospira/imunologia , Leptospira/genética , Imunogenicidade da Vacina
13.
Influenza Other Respir Viruses ; 18(6): e13336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880785

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is increasingly recognized as a significant cause of lower respiratory tract disease (LRTD) in older adults. The Ad26.RSV.preF/RSV preF protein vaccine demonstrated protective efficacy against RSV related LRTD in a Phase 2b study in the United States. Hence, Ad26.RSV.preF/RSV preF protein vaccine candidate was evaluated in the Japanese older adult population. METHODS: This Phase 1 study evaluated safety, reactogenicity, and immunogenicity of Ad26.RSV.preF/RSV preF protein vaccine at dose level of 1 × 1011 vp/150 µg in Japanese healthy adult aged ≥60 years. The study included a screening Phase, vaccination, 28-day follow up Phase, a 182-day follow-up period, and final visit on Day 183. A total of 36 participants were randomized in a 2:1 ratio to receive Ad26.RSV.preF/RSV preF protein vaccine (n = 24) or placebo (n = 12). After study intervention administration, the safety and immunogenicity analysis were performed as per planned schedule. Immune responses including virus-neutralizing and preF-specific binding antibodies were measured on Days 1, 15, 29, and 183. RESULTS: There were no deaths, SAEs, or AEs leading to discontinuation reported during the study. The Ad26.RSV.preF/RSV preF protein vaccine had acceptable safety and tolerability profile with no safety concern in Japanese older adults. The Ad26.RSV.preF/RSV preF protein vaccine induced RSV-specific humoral immunity, with increase in antibody titers on Days 15 and 29 compared with baseline which was well maintained until Day 183. CONCLUSIONS: A single dose of Ad26.RSV.preF/RSV preF protein vaccine had an acceptable safety and tolerability profile and induced RSV-specific humoral immunity in Japanese healthy adults. TRIAL REGISTRATION: NCT number: NCT04354480; Clinical Registry number: CR108768.


Assuntos
Anticorpos Antivirais , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Método Duplo-Cego , População do Leste Asiático , Imunogenicidade da Vacina , Japão , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia
14.
Hum Vaccin Immunother ; 20(1): 2364519, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38880868

RESUMO

Mucosal immunity plays a crucial role in combating and controlling the spread of highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recombinant subunit vaccines have shown safety and efficacy in clinical trials, but further investigation is necessary to evaluate their feasibility as mucosal vaccines. This study developed a SARS-CoV-2 mucosal vaccine using spike (S) proteins from a prototype strain and the omicron variant, along with a cationic chitosan adjuvant, and systematically evaluated its immunogenicity after both primary and booster immunization in mice. Primary immunization through intraperitoneal and intranasal administration of the S protein elicited cross-reactive antibodies against prototype strains, as well as delta and omicron variants, with particularly strong effects observed after mucosal vaccination. In the context of booster immunization following primary immunization with inactivated vaccines, the omicron-based S protein mucosal vaccine resulted in a broader and more robust neutralizing antibody response in both serum and respiratory mucosa compared to the prototype vaccine, enhancing protection against different variants. These findings indicate that mucosal vaccination with the S protein has the potential to trigger a broader and stronger antibody response during primary and booster immunization, making it a promising strategy against respiratory pathogens.


Assuntos
Administração Intranasal , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Camundongos , Imunização Secundária/métodos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Feminino , Imunidade nas Mucosas , Imunogenicidade da Vacina , Reações Cruzadas/imunologia , Quitosana/imunologia , Quitosana/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
15.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932278

RESUMO

The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Leucemia Felina , Camundongos Endogâmicos C57BL , Proteínas do Envelope Viral , Animais , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Vírus da Leucemia Felina/imunologia , Vírus da Leucemia Felina/genética , Produtos do Gene gag/imunologia , Produtos do Gene gag/genética , Feminino , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Humanos , Gatos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Imunogenicidade da Vacina
16.
J Immunol Res ; 2024: 9313267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939745

RESUMO

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Humanos , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Imunogenicidade da Vacina , Animais , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Epitopos de Linfócito T/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo/imunologia
17.
Sci Rep ; 14(1): 13865, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879684

RESUMO

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , Células HEK293 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Feminino , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
18.
PLoS Med ; 21(6): e1004414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857311

RESUMO

BACKGROUND: In many countries, infant vaccination with acellular pertussis (aP) vaccines has replaced use of more reactogenic whole-cell pertussis (wP) vaccines. Based on immunological and epidemiological evidence, we hypothesised that substituting the first aP dose in the routine vaccination schedule with wP vaccine might protect against IgE-mediated food allergy. We aimed to compare reactogenicity, immunogenicity, and IgE-mediated responses of a mixed wP/aP primary schedule versus the standard aP-only schedule. METHODS AND FINDINGS: OPTIMUM is a Bayesian, 2-stage, double-blind, randomised trial. In stage one, infants were assigned (1:1) to either a first dose of a pentavalent wP combination vaccine (DTwP-Hib-HepB, Pentabio PT Bio Farma, Indonesia) or a hexavalent aP vaccine (DTaP-Hib-HepB-IPV, Infanrix hexa, GlaxoSmithKline, Australia) at approximately 6 weeks old. Subsequently, all infants received the hexavalent aP vaccine at 4 and 6 months old as well as an aP vaccine at 18 months old (DTaP-IPV, Infanrix-IPV, GlaxoSmithKline, Australia). Stage two is ongoing and follows the above randomisation strategy and vaccination schedule. Ahead of ascertainment of the primary clinical outcome of allergist-confirmed IgE-mediated food allergy by 12 months old, here we present the results of secondary immunogenicity, reactogenicity, tetanus toxoid IgE-mediated immune responses, and parental acceptability endpoints. Serum IgG responses to diphtheria, tetanus, and pertussis antigens were measured using a multiplex fluorescent bead-based immunoassay; total and specific IgE were measured in plasma by means of the ImmunoCAP assay (Thermo Fisher Scientific). The immunogenicity of the mixed schedule was defined as being noninferior to that of the aP-only schedule using a noninferiority margin of 2/3 on the ratio of the geometric mean concentrations (GMR) of pertussis toxin (PT)-IgG 1 month after the 6-month aP. Solicited adverse reactions were summarised by study arm and included all children who received the first dose of either wP or aP. Parental acceptance was assessed using a 5-point Likert scale. The primary analyses were based on intention-to-treat (ITT); secondary per-protocol (PP) analyses were also performed. The trial is registered with ANZCTR (ACTRN12617000065392p). Between March 7, 2018 and January 13, 2020, 150 infants were randomised (75 per arm). PT-IgG responses of the mixed schedule were noninferior to the aP-only schedule at approximately 1 month after the 6-month aP dose [GMR = 0·98, 95% credible interval (0·77 to 1·26); probability (GMR > 2/3) > 0·99; ITT analysis]. At 7 months old, the posterior median probability of quantitation for tetanus toxoid IgE was 0·22 (95% credible interval 0·12 to 0·34) in both the mixed schedule group and in the aP-only group. Despite exclusions, the results were consistent in the PP analysis. At 6 weeks old, irritability was the most common systemic solicited reaction reported in wP (65 [88%] of 74) versus aP (59 [82%] of 72) vaccinees. At the same age, severe systemic reactions were reported among 14 (19%) of 74 infants after wP and 8 (11%) of 72 infants after aP. There were 7 SAEs among 5 participants within the first 6 months of follow-up; on blinded assessment, none were deemed to be related to the study vaccines. Parental acceptance of mixed and aP-only schedules was high (71 [97%] of 73 versus 69 [96%] of 72 would agree to have the same schedule again). CONCLUSIONS: Compared to the aP-only schedule, the mixed schedule evoked noninferior PT-IgG responses, was associated with more severe reactions, but was well accepted by parents. Tetanus toxoid IgE responses did not differ across the study groups. TRIAL REGISTRATION: Trial registered at the Australian and New Zealand Clinical 207 Trial Registry (ACTRN12617000065392p).


Assuntos
Vacina contra Difteria, Tétano e Coqueluche , Esquemas de Imunização , Imunoglobulina E , Humanos , Lactente , Método Duplo-Cego , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Feminino , Masculino , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Vacina contra Difteria, Tétano e Coqueluche/efeitos adversos , Austrália , Vacinas Combinadas/imunologia , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/administração & dosagem , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/efeitos adversos , Vacina contra Coqueluche/administração & dosagem , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/prevenção & controle , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas Anti-Haemophilus/imunologia , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/administração & dosagem , Coqueluche/prevenção & controle , Coqueluche/imunologia , Imunogenicidade da Vacina , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia
19.
Vet Res ; 55(1): 82, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937820

RESUMO

Respiratory diseases constitute a major health problem for ruminants, resulting in considerable economic losses throughout the world. Parainfluenza type 3 virus (PIV3) is one of the most important respiratory pathogens of ruminants. The pathogenicity and phylogenetic analyses of PIV3 virus have been reported in sheep and goats. However, there are no recent studies of the vaccination of sheep or goats against PIV3. Here, we developed a purified inactivated ovine parainfluenza virus type 3 (OPIV3) vaccine candidate. In addition, we immunized sheep with the inactivated OPIV3 vaccine and evaluated the immune response and pathological outcomes associated with OPIV3 TX01 infection. The vaccinated sheep demonstrated no obvious symptoms of respiratory tract infection, and there were no gross lesions or pathological changes in the lungs. The average body weight gain significantly differed between the vaccinated group and the control group (P < 0.01). The serum neutralization antibody levels rapidly increased in sheep post-vaccination and post-challenge with OPIV3. Furthermore, viral shedding in nasal swabs and viral loads in the lungs were reduced. The results of this study suggest that vaccination with this candidate vaccine induces the production of neutralizing antibodies and provides significant protection against OPIV3 infection. These results may be helpful for further studies on prevention and control strategies for OPIV3 infections.


Assuntos
Infecções por Respirovirus , Doenças dos Ovinos , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Ovinos , Infecções por Respirovirus/veterinária , Infecções por Respirovirus/prevenção & controle , Infecções por Respirovirus/virologia , Infecções por Respirovirus/imunologia , Vacinas de Produtos Inativados/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/virologia , Doenças dos Ovinos/imunologia , Vacinas Virais/imunologia , Respirovirus/imunologia , Imunogenicidade da Vacina , Vacinação/veterinária
20.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA