Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.524
Filtrar
1.
Dev Comp Immunol ; 150: 105067, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797777

RESUMO

Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.


Assuntos
Cordyceps , Lepidópteros , Animais , Cordyceps/genética , Larva , Insetos , Perfilação da Expressão Gênica
2.
Gene ; 893: 147911, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863301

RESUMO

Sunn pest (Eurygaster integriceps Puton) is major wheat pest causing economic damage. Neuropeptides and their receptors, G protein-coupled receptors (GPCRs), are involved in the regulation of insect physiology and behavior. Herein, a transcriptome-wide analysis was conducted in order to identify genes encoding neuropeptides, and putative GPCRs to gain insight into neuropeptide-modulated processes. De novo transcriptome assembly was undertaken using paired-end sequence reads derived from RNA samples collected from whole adults and yielded 582,398 contigs. In total, 46 neuropeptides have been identified, encompassing various known insect neuropeptide families. In addition, we discovered four previously uncharacterized neuroparsin peptides, which contributes to our understanding of the neuropeptide landscape. Furthermore, 85 putative neuropeptide GPCRs were identified, comprising three classes of GPCRs, A, B, C, and LGR, of which class C is not widely reported in insects. In addition, the identified GPCRs exhibited a remarkable 80% homology with the GPCRs found in the brown marmorated stink bug. It is noteworthy that these GPCRs displayed only a 20% homology to GPCRs from many other insect species. This information may be used to understand the neuropeptide-modulated physiology and behavior of Eurygaster integriceps, and to develop specific neuropeptide-based pest management strategies.


Assuntos
Heterópteros , Neuropeptídeos , Humanos , Animais , Transcriptoma/genética , Heterópteros/genética , Neuropeptídeos/genética , Insetos/genética , Receptores Acoplados a Proteínas G/genética
3.
Environ Res ; 240(Pt 1): 117432, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865327

RESUMO

Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.


Assuntos
Inseticidas , Animais , Ecossistema , Insetos , Agricultura/métodos
4.
Sci Total Environ ; 908: 168186, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37914130

RESUMO

Anthropogenic stress alters the linkage between aquatic and terrestrial ecosystems in various ways. Here, we review the contemporary literature on how alterations in aquatic systems through environmental pollution, invasive species and hydromorphological changes carry-over to terrestrial ecosystems and the food webs therein. We consider both the aquatic insect emergence and flooding as pathways through which stressors can propagate from the aquatic to the terrestrial system. We specifically synthesize and contextualize results on the roles of pollutants in the emergence pathway and their top-down consequences. Our review revealed that the emergence and flooding pathway are only considered in isolation and that the overall effects of invasive species or pollutants on food webs at the water-land interface require further attention. While very few recent studies looked at invasive species, a larger number of studies focused on metal transfer compared to pesticides, pharmaceuticals or PCBs, and multiple stress studies up to now left aquatic-terrestrial linkages unconsidered. Recent research on pollutants and emergence used aquatic-terrestrial mesocosms to elucidate the effects of aquatic stressors such as the mosquito control agent Bti, metals or pesticides to understand the effects on riparian spiders. Quality parameters, such as the structural and functional composition of emergent insect communities, the fatty acid profiles, yet also the composition of pollutants transferred to land prove to be important for the effects on riparian spiders. Process-based models including quality of emergence are useful to predict the resulting top-down directed food web effects in the terrestrial recipient ecosystem. In conclusion, we present and recommend a combination of empirical and modelling approaches in order to understand the complexity of aquatic-terrestrial stressor propagation and its spatial and temporal variation.


Assuntos
Poluentes Ambientais , Praguicidas , Aranhas , Animais , Cadeia Alimentar , Ecossistema , Insetos/química , Metais , Aranhas/química
5.
Sci Total Environ ; 908: 167995, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939959

RESUMO

Gardens are often depicted as green sanctuaries, providing refuges for wildlife displaced from the countryside due to intensive farming. While gardens have been recognized for their positive impact on biodiversity conservation, few studies have investigated the impact of pesticide usage in domestic gardens. In this study, we explored how butterfly and bumblebee populations in gardens across the UK are influenced by habitat quality, urbanisation level and pesticide use. To achieve this, we engaged with participants in Garden BirdWatch, a weekly garden wildlife recording scheme operated by the British Trust for Ornithology. Participants in the study provided data on the attributes of their garden and surrounding area and were asked to complete a questionnaire about their pesticide practices. Of the 417 gardens from which we obtained useful data, we found that 32.6 % had pesticides applied to. Urbanisation and garden quality were the main factors influencing insect populations. Butterfly richness was lower in suburban and urban gardens and butterfly abundance lower only in suburban gardens when compared to rural gardens, but this relationship did not hold for bumblebees. Abundance of butterflies and bumblebees, but not their species richness, increased with the habitat quality of gardens. Butterflies were lower in abundance and richness in more northerly gardens, which was not the case for bumblebees. Effects of pesticides were relatively weak, but butterfly richness was 7 % lower in gardens applying any pesticide. Overall, our study shows that garden butterfly and bumblebee abundance and richness are strongly influenced by both extrinsic and intrinsic factors, and that garden management can have an important positive effect on insect population.


Assuntos
Borboletas , Praguicidas , Animais , Abelhas , Humanos , Jardins , Jardinagem , Ecossistema , Biodiversidade , Insetos , Animais Selvagens
6.
Results Probl Cell Differ ; 71: 47-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37996672

RESUMO

Syncytia are common in the animal and plant kingdoms both under normal and pathological conditions. They form through cell fusion or division of a founder cell without cytokinesis. A particular type of syncytia occurs in invertebrate and vertebrate gametogenesis when the founder cell divides several times with partial cytokinesis producing a cyst (nest) of germ line cells connected by cytoplasmic bridges. The ultimate destiny of the cyst's cells differs between animal groups. Either all cells of the cyst become the gametes or some cells endoreplicate or polyploidize to become the nurse cells (trophocytes). Although many types of syncytia are permanent, the germ cell syncytium is temporary, and eventually, it separates into individual gametes. In this chapter, we give an overview of syncytium types and focus on the germline and somatic cell syncytia in various groups of insects. We also describe the multinuclear giant cells, which form through repetitive nuclear divisions and cytoplasm hypertrophy, but without cell fusion, and the accessory nuclei, which bud off the oocyte nucleus, migrate to its cortex and become included in the early embryonic syncytium.


Assuntos
Cistos , Células Germinativas , Animais , Células Germinativas/metabolismo , Oócitos , Insetos , Células Gigantes , Cistos/metabolismo
7.
J Hazard Mater ; 462: 132783, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852134

RESUMO

The presence of microplastics (MPs) in terrestrial ecosystems has been confirmed worldwide. Due to their widespread distribution and diversity in habitats, insects will readily interact with MPs via various pathways. Although the topic of MP-insect interactions is still in the early stages of research, it is becoming increasingly important. We used a META approach with phylogenetic control and subgroup examination to summarize the evidence from both field and laboratory experiments in quantitative form. The field evidence suggests that insects can take and transfer MPs along food chains via ingestion and adherence. Also, they are active in the bio-fragmentation of MPs and the generation of secondary pollutants. The exposure to MPs impaired key biological traits of insects, mainly their behavior and health, such as reducing climbing ability and increasing oxidative stress. In terms of exposure conditions, the small-sized MPs can induce more severe effects on the insects, while the insect response to MPs was not significantly reliant on exposure times or MP concentrations based on the current evidence available. We propose that insects not only play roles in the redistribution of MPs spatially and in food chains via bio-fragmentation but are also threatened by MPs. Our research deepens our understanding of the environmental risks posed by MPs in insect ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Ecossistema , Plásticos/toxicidade , Filogenia , Insetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Methods Mol Biol ; 2739: 137-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006549

RESUMO

Wolbachia, an intracellular bacterium of arthropods, is an ideal candidate for use in the biological control of insect pests. The inability of Wolbachia to grow in the extracellular environment requires maintenance in live insects or insect cell cultures. Growing and adapting high-density Wolbachia in the targeted host cells improves the possibility of cross-species transinfection. Here, we describe a method for the establishment of a primary cell culture from insect embryos and its transinfection with Wolbachia.


Assuntos
Wolbachia , Animais , Insetos , Linhagem Celular
9.
Methods Mol Biol ; 2739: 175-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006552

RESUMO

The process of transferring Wolbachia from one species to another to establish a stable, maternally inherited infection in the target species is known as transinfection. The success of transinfection is primarily achieved through embryonic microinjection, which is the most direct and efficient means of delivering Wolbachia into the germline of the target species and establishing stable maternal transmission. For the fundamental studies, transinfection is often used to characterize Wolbachia-host interactions, including Wolbachia host range, the role of host or bacterial factors in symbiosis, and evolution of Wolbachia-host associations. For the applied studies, use of transinfection to generate a novel infection in the target species is the first step to build the weapon for both population replacement and population suppression for controlling insect pests or their transmitted diseases. For the primary dengue vector Aedes aegypti and Anopheles vectors of malaria, which either do not naturally carry Wolbachia or are infected with strains that lack necessary features for implementation, transinfection can be established by introducing a novel strain capable of inducing both cytoplasmic incompatibility (CI) and pathogen blocking. For A. albopictus and Culex mosquito species, which naturally harbor CI-inducing Wolbachia, transinfection can be achieved by either introducing a novel strain to generate superinfection or replacing the native infection with a different Wolbachia strain in a symbiont-free line, which is derived from antibiotic treatment of the wild type. Here, we use A. aegypti as an example to describe the Wolbachia transinfection method, which can be adapted to other insect species, such as planthoppers, according to their specific developmental requirements.


Assuntos
Aedes , Wolbachia , Animais , Mosquitos Vetores , Microinjeções , Citoplasma , Citosol , Insetos
10.
Methods Mol Biol ; 2739: 301-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006559

RESUMO

Wolbachia, one of the most successful and studied insect symbionts, and Drosophila, one of the most understood model insects, can be exploited as complementary tools to unravel mechanisms of insect symbiosis. Although Wolbachia itself cannot be grown axenically as clonal isolates or genetically manipulated by standard methods, its reproductive phenotypes, including cytoplasmic incompatibility (CI), have been elucidated using well-developed molecular tools and precise transgenic manipulations available for Drosophila melanogaster. Current research only scratches the surface of how Drosophila can provide a tool for understanding Wolbachia's evolutionary success and the molecular roles of its genetic elements. Here, we briefly outline basic methodologies inherent to transgenic Drosophila systems that have already contributed significant advances in understanding CI, but may be unfamiliar to those who lack experience in Drosophila genetics. In the future, these approaches will continue providing significant insights into Wolbachia that undoubtedly will be extended to other insect symbionts and their biological capabilities.


Assuntos
Drosophila , Wolbachia , Animais , Drosophila melanogaster/genética , Animais Geneticamente Modificados , Evolução Biológica , Insetos , Wolbachia/genética , Simbiose/genética
11.
Methods Mol Biol ; 2739: 321-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006560

RESUMO

Yeasts are single-celled eukaryotic organisms classified as fungi, mostly in the phylum Ascomycota. Of about 1500 named species, Saccharomyces cerevisiae, also known as baker's yeast, domesticated by humans in the context of cooking and brewing, is a profound genetic tool for exploring functions of novel effector proteins from Wolbachia and prokaryotes in general. Wolbachia is a Gram-negative alpha-proteobacterium that infects up to ~75% of all insects as an obligate intracellular microbe (Jeyaprakash A, Hoy MA, Insect Mol Biol 9:393-405, 2000). Wolbachia's lifestyle presents unique challenges for researchers. Wolbachia cannot be axenically cultured and has never been genetically manipulated. Furthermore, many Wolbachia genes have no known function or well-annotated orthologs in other genomes. Yet given the effects of Wolbachia on host phenotypes, which have considerable practical applications for pest control, they undoubtedly involve secreted effector proteins that interact with host gene products. Studying these effectors is challenging with Wolbachia's current genetic limitations. However, some of the constraints to working with Wolbachia can be overcome by expressing candidate proteins in S. cerevisiae. This approach capitalizes on yeast's small genome (~6500 genes), typical eukaryotic cellular organization, and the sophisticated suite of genetic tools available for its manipulation in culture. Thus, yeast can serve as a powerful mock eukaryotic host background to study Wolbachia effector function. Specifically, yeast is used for recombinant protein expression, drug discovery, protein localization studies, protein interaction mapping (yeast two-hybrid system), modeling chromosomal evolution, and examining interactions between proteins responsible for complex phenotypes in less tractable prokaryotic systems. As an example, the paired genes responsible for Wolbachia-mediated cytoplasmic incompatibility (CI) encode novel proteins with limited homology to other known proteins, and no obvious function. This article details how S. cerevisiae was used as an initial staging ground to explore the molecular basis of one of Wolbachia's trademark phenotypes (CI).


Assuntos
Saccharomyces cerevisiae , Wolbachia , Animais , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Wolbachia/genética , Genoma , Mapeamento de Interação de Proteínas , Insetos/genética , Simbiose
12.
Braz. j. biol ; 84: e252088, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345543

RESUMO

Abstract Acacia mangium is a pioneer species with fast growth and frequently used in the recovery of degraded areas. The objectives were to evaluate insects and spiders, their ecological indices and interactions on A. mangium saplings in a tropical degraded area in recovering process. The experimental design was completely randomized with 24 replications, with treatments represented by the first and second years after A. mangium seedling planted. Numbers of leaves/branch, branches/sapling, and ground cover by A. mangium saplings, Hemiptera: Phenacoccus sp. and Pachycoris torridus; Hymenoptera: Tetragonisca angustula and Trigona spinipes, Brachymyrmex sp., Camponotus sp. and Cephalotes sp.; Blattodea: Nasutitermes sp. and Neuroptera: Chrysoperla sp.; abundance, species richness of pollinating insects, tending ants, and the abundance of Sternorrhyncha predators were greatest in the second year after planting. Numbers of Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, tending ants, pollinating insects, Sternorrhyncha predators and species richness of tending ants were highest on A. mangium saplings with greatest numbers of leaves or branches. The increase in the population of arthropods with ground cover by A. mangium saplings age increase indicates the positive impact by this plant on the recovery process of degraded areas.


Resumo Acacia mangium é uma espécie pioneira, de rápido crescimento e utilizada na recuperação de áreas degradadas. Os objetivos foram avaliar insetos e aranhas, seus índices ecológicos e interações com plantas de A. mangium em área tropical degradada em processo de recuperação. O delineamento experimental foi inteiramente casualizado com 24 repetições, com os tratamentos representados pelos primeiro e segundo anos após a plantio de A. mangium. Os números de folhas/galhos, galhos/plantas e cobertura do solo por plantas de A. mangium, de Hemiptera: Phenacoccus sp. e Pachycoris torridus; Hymenoptera: Tetragonisca angustula e Trigona spinipes, Brachymyrmex sp., Camponotus sp. e Cephalotes sp.; Blattodea: Nasutitermes sp. e Neuroptera: Chrysoperla sp.; a abundância, riqueza de espécies de insetos polinizadores, formigas cuidadoras e a abundância de predadores de Sternorrhyncha foram maiores no segundo ano após o plantio. Os números de Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, formigas cuidadoras, insetos polinizadores, predadores de Sternorrhyncha e a riqueza de espécies de formigas cuidadoras foram maiores em plantas de A. mangium com maior altura e número de folhas ou galhos. O aumento populacional de artrópodes e da cobertura do solo com o processo de envelhecimento das plantas de A. mangium indicam impacto positivo dessa planta na recuperação de áreas degradadas.


Assuntos
Animais , Aranhas , Acacia , Insetos , Biomarcadores Ambientais , Recuperação e Remediação Ambiental
13.
Braz. j. biol ; 84: e253598, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355857

RESUMO

Abstract Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) trees are widely distributed throughout the Cerrado ecosystem. The fruits of C. brasiliense trees are used by humans for food and as the main income source in many communities. C. brasiliense conservation is seriously threatened due to habitat loss caused by the land-use change. Sucking insects constitute an important ecological driver that potentially impact C. brasiliense survival in degraded environments. In addition, insects sampling methodologies for application in studies related to the conservation of C. brasiliense are poorly developed. In this study, sucking insects (Hemiptera) and their predators were recorded in three vertical strata of Caryocar brasiliense canopies. The distribution of sucking species showed vertical stratification along the canopy structure of C. brasiliense. The basal part of the canopy had the highest numbers of sucking insects Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) and Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), and their predators Chrysoperla sp. (Neuroptera: Chrysopidae), spiders (Araneae), and Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Predators' distribution follows the resource availability and preferred C. brasiliense tree parts with a higher abundance of prey.


Resumo Caryocar brasiliense Camb. (Malpighiales: Caryocaraceae) é amplamente distribuído por todo o ecossistema de cerrado. Os frutos de C. brasiliense são utilizados na alimentação humana e constitui uma importante fonte de renda para muitas comunidades. A perda de habitat provocada pelas mudanças de uso da terra coloca em risco a conservação de C. brasiliense. Insetos sugadores constituem um importante fator ecológico que, potencialmente, afeta o fitness de C. brasiliense em ambientes degradados. Além disso, as metodologias de amostragem de insetos para aplicação em estudos relacionados à conservação de C. brasiliense são pouco desenvolvidas. Neste estudo, o número de insetos sugadores (Hemiptera) e seus predadores foram avaliados em três estratos verticais do dossel de C. brasiliense. A distribuição das espécies sugadoras apresentou estratificação vertical ao longo da estrutura do dossel. O estrato basal do dossel apresentou o maior número de insetos sugadores Aphis gossypii (Glover 1877) (Hemiptera: Aphididae) e Bemisia tabaci (Genn. 1889) (Hemiptera: Aleyrodidae), e seus predadores Chrysoperla sp. (Neuroptera: Chrysopidae), aranhas (Araneae) e Zelus armillatus (Lep. & Servi., 1825) (Hemiptera: Reduviidae). Os predadores distribuíram-se de acordo com a disponibilidade de recursos, ocorrendo em maior número nas partes do dossel com maior abundância de suas presas.


Assuntos
Humanos , Animais , Afídeos , Malpighiales , Árvores , Ecossistema , Insetos
14.
Braz. j. biol ; 84: e254095, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355860

RESUMO

Abstract In northern central Chile, ephemeral pools constitute shallow isolated water bodies with a favourable habitat for fauna adapted to seasonal changes. Based on the limited knowledge about the fauna—particularly insects—associated to these ecosystems, the objective of this study was to characterize the richness, composition, structure and similarity of the insect communities associated with ephemeral pools in Huentelauquén (29º S, Coquimbo Region, Chile). By using pitfall traps, 10,762 individuals were captured, represented by 7 orders, 27 families, and 51 species. Coleoptera and Hymenoptera were the best represented orders, with Neuroptera, Orthoptera and Plecoptera being poorly represented groups. The non-parametric estimators evaluated showed wealth values above those observed for all the studied pools, and their accumulation curves suggest the existence of an incomplete species inventory in the studied community. Additionally, the hierarchical and ordering analysis showed groupings of pools located in the northwest and southeast of Huentelauquén. Preliminarily we found a negative correlation between the area of the pools and the richness (species) and abundance of insects. Additional studies (on other arthropod groups and other seasons of the year) could provide a better understanding of the local processes of extinction and colonization of the species inhabiting these fragile coastal environments.


Resumo No norte central do Chile, lagoas efêmeras constituem corpos de água isolados e pouco profundos, com um habitat favorável para a fauna adaptada as mudanças sazonais que as zonas úmidas estão sujeitas. Com relação a estes ecossistemas, sabe-se pouco sobre sua fauna, principalmente a de insetos. O objetivo do presente estudo foi caracterizar a riqueza, composição, estrutura e similaridade das comunidades de insetos que habitam as lagoas temporárias de Huentelauquén (29º S, Região de Coquimbo, Chile). Usando armadilhas de interceptação, se capturou um total de 10.762 indivíduos, pertencentes a 7 ordens, 27 famílias e 51 espécies. Coleoptera e Hymenoptera foram as ordens mais representativas, enquanto Neuroptera, Orthoptera e Plecoptera foram grupos pouco representativos. Os estimadores não paramétricos avaliados mostraram valores de riqueza superiores ao observados para todas as lagoas estudadas, e suas curvas de acumulação parecem indicar que o inventario da comunidade estudada está incompleto. A análise hierárquica e de ordenamento revelou agrupamentos de lagoas correspondentes a zona nordeste e sudeste de Huentelauquén. Preliminarmente encontramos uma correlação negativa entre a área de lagoas efêmeras e a riqueza (espécies) e abundância de insetos. É necessário realizar estudos adicionais (sobre outros grupos de artrópodes e em outras estações do ano) para melhor compreensão dos processos locais de extinção e colonização das espécies que habitam estes frágeis ambientes costeiros estudados.


Assuntos
Humanos , Animais , Besouros , Ecossistema , Estações do Ano , Chile , Biodiversidade , Insetos
15.
Braz. j. biol ; 84: e253218, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355863

RESUMO

Abstract Indices are used to help on decision-making. This study aims to develop and test an index, which can determine the loss (e.g., herbivorous insects) and solution (e.g., natural enemies) sources. They will be classified according to their importance regarding the ability to damage or to reduce the source of damage to the system when the final production is unknown. Acacia auriculiformis (Fabales: Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs, and it is adequate to evaluate a new index. The formula was: Percentage of the Importance Indice-Production Unknown (% I.I.-PU) = [(ks1 x c1 x ds1)/Σ (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. The loss sources Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae), Aleyrodidae (Hemiptera), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae), and Tettigoniidae, and solution sources Uspachus sp. (Araneae: Salticidae), Salticidae (Araneae), and Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) showed the highest % I.I.-PU on leaves of A. auriculiformis saplings. The number of Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) was reduced per number of Salticidae; that of A. reticulatum that of Uspachus sp.; and that of Cephalocoema sp. (Orthoptera: Proscopiidae) that of P. termitarius on A. auriculiformis saplings. However, the number of Aleyrodidae was increased per number of Cephalotes sp. (Hymenoptera: Formicidae) and that of A. reticulatum that of Brachymyrmex sp. (Hymenoptera: Formicidae) on A. auriculiformis saplings. The A. reticulatum damage was reduced per number of Uspachus sp., but the Aleyrodidae damage was increased per number of Cephalotes sp., totaling 23.81% of increase by insect damages on A. auriculiformis saplings. Here I show and test the % I.I.-PU. It is an new index that can detect the loss or solution sources on a system when production is unknown. It can be applied in some knowledge areas.


Resumo Índices são usados para ajudar na tomada de decisões. Este trabalho teve como objetivo desenvolver e testar um índice capaz de determinar fontes de perda (ex.: insetos herbívoros) e de solução (ex.: inimigos naturais). Eles serão classificados de acordo com sua importância quanto a habilidade de danificar ou reduzir danos no sistema, quando a produção final é desconhecida. Acacia auriculiformis (Fabales: Fabaceae), uma espécie pioneira não nativa do Brasil com rápido crescimento e rusticidade, usada em programas de restauração, é adequada para avaliar um novo índice. A fórmula foi: Porcentagem de Índice de Importância-Produção Desconhecida (% I.I.-PD) = [(ks1 x c1 x ds1)/Σ (ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)] x 100. As fontes de perda Aethalion reticulatum L., 1767 (Hemiptera: Aethalionidae), Aleyrodidae (Hemiptera), Stereoma anchoralis Lacordaire, 1848 (Coleoptera: Chrysomelidae) e Tettigoniidae, e as fontes de solução Uspachus sp. (Araneae: Salticidae), Salticidae (Araneae) e Pseudomyrmex termitarius (Smith, 1877) (Hymenoptera: Formicidae) apresentaram maiores % I.I.-PD nas folhas das mudas de A. auriculiformis. O número de Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae) foi reduzido pelo número de Salticidae; o de A. reticulatum pelo de Uspachus sp.; e o de Cephalocoema sp. (Orthoptera: Proscopiidae) pelo de P. termitarius em mudas de A. auriculiformis. Entretanto, o número de Aleyrodidae foi aumentado pelo número de Cephalotes sp. (Hymenoptera: Formicidae) e o de A. reticulatum pelo de Brachymyrmex sp. (Hymenoptera: Formicidae) em mudas de A. auriculiformis. O dano de A. reticulatum foi reduzido pelo número de Uspachus sp., mas o dano de Aleyrodidae foi aumentado pelo número de Cephalotes sp., totalizando 23,81% de aumento de danos em mudas de A. auriculiformis. Aqui eu apresento e testo o % I.I.-PD. Ele é um novo índice capaz de detectar fontes de perda e de solução no sistema quando não se conhece a produção final. Ele pode ser aplicado em algumas áreas do conhecimento.


Assuntos
Animais , Formigas , Besouros , Acacia , Hemípteros , Insetos
16.
Braz. j. biol ; 84: e255950, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364497

RESUMO

Aquatic insect fauna remains an important tool for bio indication of environmental disturbance, while maintaining a healthy aquatic system. The purpose of the study was to document and to identify the diversity and distribution patterns of aquatic insect, a highly ignored aspect from the Qatar. Following the standard procedures, the samples were collected from aquatic habitats during the period October 2015 to May 2017 on monthly basis. A total of 11,287 individuals, belonging to 6 orders were captured. Dipterans were the abundant with the percentages of 71.01 (n=8,015), while the lowest percentage was observed for Coleoptera 0.04 (n=05). Twelve insects families were identified, among these five were reported under Diptera, followed by Hemiptera (03), while Coleoptera, Tricoptera, Odonata, and Ephemeroptera were represented by single families. Among the selected localities, Dipterans were collected from 10 stations, followed by Hemiptera (9), Coleoptera (4), Odonota (4), Ephemeroptera (3) and Trichoptera (1) respectively. Among the water bodies samples, streams were the most preferred habitats (n=2,767), while drinking water pools were the least (27). Moreover, the highest Simpson diversity index of 1.48 and lowest of 0.47 was recorded for flooded sewage pool and plastic containers respectively, while the low evenness values were observed for ponds, and less than 1 Margalef's diversity values were seen for all habitats. This study documents the patterns of the diversity and distribution of aquatic insects, and provides a baseline for the future studies from Qatar.


A fauna aquática de insetos continua sendo uma ferramenta importante para a bioindicação de distúrbios ambientais, ao mesmo tempo em que mantém um sistema aquático saudável. O objetivo do estudo foi documentar e identificar a diversidade e os padrões de distribuição dos insetos aquáticos, um aspecto altamente ignorado no Catar. Seguindo os procedimentos padrão, as amostras foram coletadas em hábitats aquáticos durante o período de outubro de 2015 a maio de 2017, mensalmente. Um total de 11.287 indivíduos, pertencentes a seis ordens, foram capturados. Dípteros foram os mais abundantes, com as porcentagens de 71,01 (n = 8.015), enquanto a menor porcentagem foi observada para Coleópteros 0,04 (n = 05). Doze famílias de insetos foram identificadas, destas, cinco foram registradas sob Diptera, seguido por Hemiptera (03), enquanto Coleoptera, Tricoptera, Odonata e Ephemeroptera foram representados por famílias únicas. Dentre as localidades selecionadas, Dipterans foram coletados em 10 estações, seguidos por Hemiptera (9), Coleoptera (4), Odonota (4), Ephemeroptera (3) e Trichoptera (1), respectivamente. Entre as amostras de corpos d'água, os riachos foram os hábitats mais preferidos (n = 2.767), enquanto as piscinas de água potável foram os menos (27). Além disso, o maior índice de diversidade de Simpson de 1,48 e o menor de 0,47 foi registrado para piscina de esgoto inundada e recipientes de plástico, respectivamente, enquanto os valores de baixa uniformidade foram observados para lagoas e menos de 1 valores de diversidade de Margalef foram observados para todos os hábitats. Este estudo documenta os padrões de diversidade e distribuição de insetos aquáticos e fornece uma linha de base para os estudos futuros do Catar.


Assuntos
Animais , Fauna Aquática , Ecossistema , Insetos
17.
Gene ; 892: 147906, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844850

RESUMO

In the species-rich Phylum Arthropoda, the mitochondrial genome is relatively well conserved both in terms of number and order of genes. However, specific clades have a 'typical' gene order that differs from the putative arthropod ancestral arrangement. The aim of this work was to compare the rate of mitochondrial gene rearrangements at inter- and intra-taxonomic levels in the Arthropoda and to postulate the most parsimonious ancestral orders representing the four major arthropod lineages. For this purpose, we performed a comparative genomic analysis of arthropod mitochondrial genomes available in the NCBI database. Using a combination of bioinformatics methods that examined mitochondrial gene rearrangements in 464 species of arthropods from three subphyla (Chelicerata, Myriapoda, and Crustacea [except Hexapoda, previously analyzed]), we observed differences in the rate of rearrangement within major lineages. A higher rate of mitochondrial genome rearrangement was observed in Crustacea and Chelicerata compared to Myriapoda. Likewise, early branching clades exhibit less variability in mitochondrial genome order than late branching clades, within each subphylum. We identified 'hot regions' in the mitochondrial genome of each studied subphylum, and postulated the most likely ancestral gene order in each subphylum and taxonomic order. Our work provides new evidence on the evolutionary dynamics of mitochondrial genome gene order in arthropods and new mitochondrial genome architectures in different taxonomic divisions within each major lineage of arthropods.


Assuntos
Artrópodes , Genoma Mitocondrial , Animais , Artrópodes/genética , Genoma Mitocondrial/genética , Ordem dos Genes , Filogenia , Insetos/genética , Crustáceos/genética , Rearranjo Gênico , Evolução Molecular
18.
Food Chem ; 436: 137712, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852073

RESUMO

With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.


Assuntos
Aminoácidos , Insetos , Animais , Humanos , Insetos/química , Bactérias/genética , Fungos/genética
19.
PeerJ ; 11: e16133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025706

RESUMO

Background: Loss of biological connectivity increases the vulnerability of ecological dynamics, thereby affecting processes such as pollination. Therefore, it is important to understand the roles of the actors that participate in these interaction networks. Nonetheless, there is a significant oversight regarding the main actors in the pollination networks within the highly biodiverse forests of Colombia. Hence, the present study aims to evaluate the interaction patterns of a network of potential pollinators that inhabit an Andean Forest in Totoró, Cauca, Colombia. Methods: The interactions between plants and potential pollinators were recorded through direct observation in 10 transects during six field trips conducted over the course of one year. Subsequently, an interaction matrix was developed, and network metrics such as connectance, specialization, nestedness, and asymmetry of interaction strength were evaluated by applying null models. An interpolation/extrapolation curve was calculated in order to assess the representativeness of the sample. Finally, the key species of the network were identified by considering degree (k), centrality, and betweenness centrality. Results: A total of 53 plant species and 52 potential pollinator species (including insects and birds) were recorded, with a sample coverage of 88.5%. Connectance (C = 0.19) and specialization (H2' = 0.19) were low, indicating a generalist network. Freziera canescens, Gaiadendron punctatum, Persea mutisii, Bombus rubicundus, Heliangelus exortis, Chironomus sp., and Metallura tyrianthina were identified as the key species that contribute to a more cohesive network structure. Discussion: The present study characterized the structure of the plant-pollinator network in a highly diverse Andean forest in Colombia. It is evident that insects are the largest group of pollinators; however, it is interesting to note that birds form a different module that specializes in pollinating a specific group of plants. On the other hand, the diversity and generality of the species found suggest that the network may be robust against chains of extinction. Nevertheless, the presence of certain introduced species, such as Apis mellifera, and the rapid changes in vegetation cover may affect the dynamics of this mutualistic network. So, it is imperative to apply restoration and conservation strategies to these ecosystems in order to enhance plant-animal interactions and prevent the loss of taxonomical and functional diversity.


Assuntos
Ecossistema , Florestas , Animais , Colômbia , Polinização , Insetos , Plantas , Aves
20.
PeerJ ; 11: e16319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025756

RESUMO

Background: Mutualistic interactions between plants and their pollinating insects are critical to the maintenance of biodiversity. However, we have yet to demonstrate that we are able to manage the structural properties of these networks for the purposes of pollinator conservation and preserving functional outcomes, such as pollination services. Our objective was to explore the extent of our ability to experimentally increase, decrease, and maintain connectance, a structural attribute that reflects patterns of insect visitation and foraging preferences. Patterns of connectance relate to the stability and function of ecological networks. Methods: We implemented a 2-year field experiment across eight sites in urban Dublin, Ireland, applying four agrochemical treatments to fixed communities of seven flowering plant species in a randomized block design. We spent ~117 h collecting 1,908 flower-visiting insects of 92 species or morphospecies with standardized sampling methods across the 2 years. We hypothesized that the fertilizer treatment would increase, herbicide decrease, and a combination of both maintain the connectance of the network, relative to a control treatment of just water. Results: Our results showed that we were able to successfully increase network connectance with a fertilizer treatment, and maintain network connectance with a combination of fertilizer and herbicide. However, we were not successful in decreasing network connectance with the herbicide treatment. The increase in connectance in the fertilized treatment was due to an increased species richness of visiting insects, rather than changes to their abundance. We also demonstrated that this change was due to an increase in the realized proportion of insect visitor species rather than increased visitation by common, generalist species of floral visitors. Overall, this work suggests that connectance is an attribute of network structure that can be manipulated, with implications for management goals or conservation efforts in these mutualistic communities.


Assuntos
Fertilizantes , Herbicidas , Animais , Insetos , Polinização , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...