Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.067
Filtrar
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474751

RESUMO

Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors ß1 (total and activated) and ß4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated ß1 and ß4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin ß1 and ß4 expression and inducing the mesenchymal-epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy.


Assuntos
Isotiocianatos , Sulfóxidos , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Cisplatino , Gencitabina , Vimentina , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Caderinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapêutico
2.
Sci Rep ; 14(1): 6937, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521828

RESUMO

Keratoconus (KC) is a progressive degenerative disease that usually occurs bilaterally and is characterized by corneal thinning and apical protrusion of the cornea. Oxidative stress is an indicator of the accumulation of reactive oxygen species (ROS), and KC keratocytes exhibit increased ROS production compared with that of normal keratocytes. Therefore, oxidative stress in KC keratocytes may play a major role in the development and progression of KC. Here, we investigated the protective effect of sulforaphane (SF) antioxidants using a hydrogel-simulated model of the cell mechanical microenvironment of KC. The stiffness of the KC matrix microenvironment in vitro was 16.70 kPa and the stiffness of the normal matrix microenvironment was 34.88 kPa. Human keratocytes (HKs) were cultured for 24 h before observation or drug treatment with H2O2 in the presence or absence of SF. The levels of oxidative stress, nuclear factor E2-related factor 2 (Nrf-2) and antioxidant response element (ARE) were detected. The high-stress state of HKs in the mechanical microenvironment of KC cells compensates for the activation of the Nrf-2/ARE signaling pathway. H2O2 leads to increased oxidative stress and decreased levels of antioxidant proteins in KC. In summary, SF can reduce endogenous and exogenous oxidative stress and increase the antioxidant capacity of cells.


Assuntos
Isotiocianatos , Ceratocone , Sulfóxidos , Humanos , Ceratocone/tratamento farmacológico , Ceratocone/metabolismo , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Elementos de Resposta Antioxidante , Peróxido de Hidrogênio/metabolismo , Córnea/metabolismo
4.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540770

RESUMO

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Assuntos
Anti-Infecciosos , Brassica , Isotiocianatos , Sulfóxidos , Brassica/metabolismo , Proteção de Cultivos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
5.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542669

RESUMO

Isothiocyanates are biologically active products resulting from the hydrolysis of glucosinolates predominantly present in cruciferous vegetables belonging to the Brassicaceae family. Numerous studies have demonstrated the diverse bioactivities of various isothiocyanates, encompassing anticarcinogenic, anti-inflammatory, and antioxidative properties. Nature harbors distinct isothiocyanate precursors, glucosinolates such as glucoraphanin and gluconastrin, each characterized by unique structures, physical properties, and pharmacological potentials. This comprehensive review aims to consolidate the current understanding of Moringa isothiocyanates, mainly 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate), comparing this compound with other well-studied isothiocyanates such as sulforaphane and phenyl ethyl isothiocyanates. The focus is directed toward elucidating differences and similarities in the efficacy of these compounds as agents with anticancer, anti-inflammatory, and antioxidative properties.


Assuntos
Anticarcinógenos , Brassicaceae , Glucosinolatos/farmacologia , Brassicaceae/química , Isotiocianatos/farmacologia , Antioxidantes/farmacologia , Anti-Inflamatórios , Anticarcinógenos/farmacologia
6.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543016

RESUMO

Moringa oleifera Lam, commonly known as moringa, is a plant widely used both as a human food and for medicinal purposes around the world. This research aimed to evaluate the efficacy of the aqueous extract of Moringa oleifera leaves (MoAE) and benzyl isothiocyanate (BIT) in rats with induced breast cancer. Cancer was induced with 7,12-dimethylbenz[a]anthracene (DMBA) at a dose of 60 mg/kg by orogastric gavage once only. Forty-eight rats were randomly assigned to eight groups, each consisting of six individuals. The control group (healthy) was called Group I. Group II received DMBA plus saline. In addition to DMBA, Groups III, IV, and V received MoAE at 100, 250, and 500 mg/kg/day, respectively, while Groups VI, VII, and VIII received BIT at 5, 10, and 20 mg/kg/day, respectively. Treatment was carried out for 13 weeks. Secondary metabolite analysis results identified predominantly quercetin, caffeoylquinic acid, neochlorogenic acid, vitexin, and kaempferol, as well as tropone, betaine, loliolide, and vitexin. The administration of MoAE at a dose of 500 mg/kg and BIT at 20 mg/kg exhibited a notable decrease in both the total tumor count and the cumulative tumor weight, along with a delay in their onset. Furthermore, they improved the histological grade. A significant decrease in serum levels of VEGF and IL-1ß levels was observed (p < 0.001) with a better effect demonstrated with MoAE at 500 mg/kg and BIT at 20 mg/kg. In conclusion, this study suggests that both the aqueous extract of Moringa oleifera leaves and the benzyl isothiocyanate possess antitumor properties against mammary carcinogenesis, and this effect could be due, at least in part, to the flavonoids and isothiocyanates present in the extract.


Assuntos
Moringa oleifera , Camundongos , Ratos , Humanos , Animais , Moringa oleifera/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Isotiocianatos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Carcinogênese , Folhas de Planta/química
7.
Eur J Pharmacol ; 969: 176477, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438062

RESUMO

Polycystic ovarian syndrome (PCOS) has been associated with depression and suicidal ideations in females. Studies have highlighted the role of autophagic deficiency in depression pathogenesis. Sulforaphane (SFN) is a natural product that improved autophagic deficiency and showed antidepressant activity in depressed patients. Herein, the study aimed to evaluate the impact of using SFN on depression-associated with PCOS via hippocampal energy sensors and cellular bioenergetics. PCOS was induced by administering letrozole (1 mg/kg, p. o.) for 21 days, followed by SFN treatment (0.5 mg/kg, i. p.) for one week. Two days before euthanasia, PCOS rats showed anhedonic behavior in the sucrose preference test and increased immobility time in the forced swimming test. Depressed rats showed a reduction in nuclear SIRT1 and an elevated cytoplasmic one. This was associated with a reduction in phosphorylation of energy sensors, liver kinase B1 (LKB1), and adenosine monophosphate kinase (AMPK), along with an imbalance of autophagic markers such as Beclin-1, microtubule-associated protein I/II light chain 3, autophagy enzyme 7 and selective autophagy receptor P62. Additionally, Nrf2 and KEAP1 levels were decreased. These abnormalities were alleviated by SFN treatment, as evidenced by the nuclear translocation of SIRT1 and the repression of downstream proteins, including FOXO1, NF-κB, and TNF-α production. These changes were reflected in improved behavioral performance in the sucrose preference test (SPT) and forced swimming test (FST). The antidepressant effects of SFN were counteracted by an autophagic inhibitor, 3-methyladenine. Eventually, SFN, as a nutraceutical, has a promising antidepressant effect via restoring autophagic-related depression in the PCOS rat model.


Assuntos
Proteínas Quinases Ativadas por AMP , Isotiocianatos , Síndrome do Ovário Policístico , Sulfóxidos , Humanos , Feminino , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Depressão/tratamento farmacológico , Sirtuína 1/metabolismo , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Autofagia , Sacarose/farmacologia
8.
BMC Mol Cell Biol ; 25(1): 5, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438917

RESUMO

BACKGROUND: Combination therapies in cancer treatment have demonstrated synergistic or additive outcomes while also reducing the development of drug resistance compared to monotherapy. This study explores the potential of combining the chemotherapeutic agent Paclitaxel (PTX) with Sulforaphane (SFN), a natural compound primarily found in cruciferous vegetables, to enhance treatment efficacy in prostate cancer. METHODS: Two prostate cancer cell lines, PC-3 and LNCaP, were treated with varying concentrations of PTX, SFN, and their combination. Cell viability was assessed using the thiazolyl blue tetrazolium bromide (MTT) assay to determine the EC50 values. Western blot analysis was conducted to evaluate the expression of Bax, Bcl2, and Caspase-3 activation proteins in response to individual and combined treatments of PTX and SFN. Fluorescent microscopy was employed to observe morphological changes indicative of apoptotic stress in cell nuclei. Flow cytometry analysis was utilized to assess alterations in cell cycle phases, such as redistribution and arrest. Statistical analyses, including Student's t-tests and one-way analysis of variance with Tukey's correction, were performed to determine significant differences between mono- and combination treatments. RESULTS: The impact of PTX, SFN, and their combination on cell viability reduction was evaluated in a dose-dependent manner. The combined treatment enhanced PTX's effects and decreased the EC50 values of both drugs compared to individual treatments. PTX and SFN treatments differentially regulated the expression of Bax and Bcl2 proteins in PC-3 and LNCaP cell lines, favoring apoptosis over cell survival. Our data indicated that combination therapy significantly increased Bax protein expression and the Bax/Bcl2 ratio compared to PTX or SFN alone. Flow cytometry analysis revealed alterations in cell cycle phases, including S-phase arrest and an increased population of apoptotic cells. Notably, the combination treatments did not have a discernible impact on necrotic cells. Signs of apoptotic cell death were confirmed through Caspase-3 cleavage, and morphological changes in cell nuclei were assessed via western blot and fluorescent microscopy. CONCLUSION: This combination therapy of PTX and SFN has the potential to improve prostate cancer treatment by minimizing side effects while maintaining efficacy. Mechanistic investigations revealed that SFN enhances PTX efficacy by promoting apoptosis, activating caspase-3, inducing nuclear morphology changes, modulating the cell cycle, and altering Bax and Bcl2 protein expression. These findings offer valuable insights into the synergistic effects of PTX and SFN, supporting the optimization of combination therapy and providing efficient therapeutic strategies in preclinical research.


Assuntos
Apoptose , Isotiocianatos , Neoplasias da Próstata , Sulfóxidos , Masculino , Humanos , Proteína X Associada a bcl-2 , Caspase 3 , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2
9.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395265

RESUMO

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Assuntos
Acetanilidas , Antipsicóticos , Diabetes Mellitus Tipo 2 , Purinas , Canais de Potencial de Receptor Transitório , Camundongos , Humanos , Feminino , Animais , Canal de Cátion TRPA1 , Olanzapina , Antipsicóticos/toxicidade , Isotiocianatos/farmacologia , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Fígado/metabolismo
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339067

RESUMO

Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.


Assuntos
Isotiocianatos , Estresse Oxidativo , Animais , Humanos , Estudos Prospectivos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Inflamação/tratamento farmacológico , Sulfóxidos/farmacologia , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2/metabolismo
11.
Toxicol Appl Pharmacol ; 484: 116857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341106

RESUMO

Intestinal injury is one of the most debilitating side effects of many chemotherapeutic agents, such as irinotecan hydrochloride (CPT-11). Accumulating evidence indicates that neutrophil extracellular traps (NETs) play a critical role in the symptoms of ischemia and inflammation related to chemotherapy. The present study investigated the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating chemotherapeutic intestinal injury. CPT-11 induced robust neutrophil activation, as evidenced by increased NETs release, intestinal ischemia, and mRNA expression of inflammatory factors. PEITC prolonged the clotting time of chemotherapeutic mice, improved the intestinal microcirculation, inhibited the expression of inflammatory factors, and protected the tight junctions of the intestinal epithelium. Both in vivo and in vitro experiments revealed that PEITC directly suppresses CPT-11-induced NETs damage to intestinal cells, resulting in significant attenuation of epithelial injury. These results suggest that PEITC may be a novel agent to relieve chemotherapeutic intestinal injury via inhibition of NETs.


Assuntos
Armadilhas Extracelulares , Enteropatias , Animais , Camundongos , Irinotecano , Isotiocianatos/farmacologia , Isquemia
12.
ACS Synth Biol ; 13(3): 736-744, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412618

RESUMO

Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.


Assuntos
Brassica , Humanos , Brassica/genética , Glucosinolatos/análise , Culinária , Produtos Agrícolas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Isotiocianatos/metabolismo
13.
Iran J Immunol ; 21(1): 37-52, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38314669

RESUMO

Background: The imbalance between M1 and M2 macrophage activation is closely associated with the pathogenesis of inflammatory bowel diseases (IBDs). Sulforaphane (SFN) plays an important role in the treatment of inflammatory diseases. Objective: To investigate the effect of SFN on macrophage polarization and its underlying regulatory mechanism. Methods: Mouse bone marrow-derived macrophages (BMDMs) were treated with SFN and an Nrf2 inhibitor, Brusatol. M1 macrophages were induced by LPS and IFN-γ stimulation, whereas M2 macrophages were induced by stimulation with IL-4 and IL-13. LPS-stimulated BMDMs were co-cultured with Caco-2 cells. Flow cytometry, qRT-PCR, and Western blot were performed to assess macrophage polarization. Cell function was assessed using CCK8 assay, transepithelial electrical resistance (TEER) assay, and biochemical analysis. Results: Higher concentrations of SFN resulted in better intervention effects, with an optimal concentration of 10 µM. SFN decreased the levels of IL-12, IL-6, and TNF-α, as well as the percentages of CD16/32 in M1 BMDMs. At the same time, SFN increased the levels of YM1, Fizz1, and Arg1 as well as the percentages of CD206+ cells in M2 BMDMs. In addition, SFN enhanced the accumulation of Nrf2, NQO1, and HO-1 in M1 BMDMs, and the downregulation of Nrf2 reversed the regulatory effect of SFN on M1/M2 macrophages. LPS-stimulated BMDMs induced Caco-2 cell damage, which was partially alleviated by SFN. Conclusion: Our findings indicate that SFN may act as an Nrf2 agonist to regulate macrophage polarization from M1 to M2. Furthermore, SFN may represent a potential protective ingredient against IBD.


Assuntos
Isotiocianatos , Lipopolissacarídeos , Ativação de Macrófagos , Sulfóxidos , Camundongos , Humanos , Animais , Células CACO-2 , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Macrófagos
14.
Dalton Trans ; 53(11): 5073-5083, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375910

RESUMO

A series of Pd(II) complexes of the general formula [PdX(NNS)] (X = Cl, Br, I, NCS and phenyl-tetrazole-thiolato; NNS = 2-quinolinecarboxyaldehyde-N4-phenylthiosemicarbazone) was tested against four malignant cell lines for their antiproliferative properties and the outcomes were compared to those seen in normal mouse splenocytes. Various auxiliary ligands were substituted in order to investigate the impact of the character of the ligand on the cytotoxicity of this class of Pd(II) complexes. The iodo complex was the most cytotoxic compound towards the Caco-2 cell line in this study. The improved apoptosis and necrosis cell modes were in accordance with the fragmentation results of DNA, which revealed increased fragmentation terminals, especially in isothiocyanate and tetrazole-thiolato complexes. After 24 hours, at half the IC50 of each complex, the complex-treated cells exhibited considerable genotoxicity when compared to the corresponding non-treated control especially in the case of isothiocyanate and tetrazole-thiolato complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Tiossemicarbazonas/farmacologia , Ligantes , Células CACO-2 , Antineoplásicos/farmacologia , Apoptose , Tetrazóis , Isotiocianatos/farmacologia , Complexos de Coordenação/farmacologia
15.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337658

RESUMO

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Assuntos
Microbioma Gastrointestinal , Nasturtium , Tropaeolum , Feminino , Humanos , Isotiocianatos/farmacologia , Bactérias , Escherichia coli , Metaboloma
16.
Biomed Res ; 45(1): 45-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325845

RESUMO

T-type Ca2+ channels and TRPA1 expressed in sensory neurons are involved in pain. We previously demonstrated a functional interaction of these channels under physiological conditions. Here we investigated the possible involvement of these channels in inflammatory pain condition. We also evaluated the relationship of these channels endogenously expressed in RIN-14B, a rat pancreatic islet tumor cell line. In dorsal root ganglion (DRG) neurons innervated inflammatory side, [Ca2+]i increases induced by 15 mM KCl (15K) were enhanced in neurons responded to AITC. This enhancement was not observed in genetically TRPA1-deficient neurons. The T-type and AITC-induced currents were larger in neurons of the inflammatory side than in those of the control one. In DRGs of the inflammatory side, the protein expression of Cav3.2, but not TRPA1, was increased. In RIN-14B, 15K-induced [Ca2+]i increases were decreased by blockers of T-type Ca2+ channel and TRPA1, and by TRPA1-silencing. Immunoprecipitation suggested the coexistent of these channels in sensory neurons and RIN-14B. In mice with inflammation, mechanical hypersensitivity was suppressed by blockers of both channels. These data suggest that the interaction of Cav3.2 with TRPA1 in sensory neurons is enhanced via the augmentation of the activities of both channels under inflammatory conditions, indicating that both channels are therapeutic targets for inflammatory pain.


Assuntos
Cálcio , Isotiocianatos , Nociceptividade , Animais , Camundongos , Ratos , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/genética
17.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297809

RESUMO

Chemosensory proteins (CSPs) are highly efficient carry tools to bind and deliver hydrophobic compounds, which play an important role in the chemosensory process in insects. The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a cosmopolitan pest that attacks cruciferous crops. However, the detailed physiological functions of CSPs in P. xylostella remain limited to date. Here, we identified a typical CSP, named PxylCSP18, in P. xylostella and investigated its expression patterns and binding properties of volatiles. PxylCSP18 was highly expressed in antennae and head (without antennae), and the expression level in the male antennae of P. xylostella was obviously higher than that in the female antennae. Moreover, PxylCSP18 has a relatively broad binding spectrum. Fluorescence competitive binding assays showed that PxylCSP18 had strong binding abilities with 14 plant volatiles (Ki < 10 µM) that were repellent or attractive to P. xylostella. Notably, PxylCSP18 had no significant binding affinity to (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecenyl alcolol, which are the pheromone components of P. xylostella. The attractive effects of trans-2-hexen-1-ol and isopropyl isothiocyanate to male adults and the attractive effects of isopropyl isothiocyanate and the repellent effects of linalool to female adults were significantly decreased after knocked down the expression of PxylCSP18. Our results revealed that PxylCSP18 might play an important role in host plant detection, avoidance of unsuitable hosts, and selection of oviposition sites; however, it does not participate in mating behavior. Overall, these results extended our knowledge on the CSP-related functions, which provided insightful information about CSP-targeted insecticides.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Feminino , Animais , Mariposas/fisiologia , Isotiocianatos/farmacologia , Inseticidas/farmacologia , Produtos Agrícolas
18.
Food Res Int ; 178: 114004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309927

RESUMO

Cabbages are rich in sulfur-containing metabolites like glucosinolates (GLSs) and S-methyl-l-cysteine sulfoxide (SMCSO). Tissue disruption initiates hydrolysis of these compounds and bioactive volatile hydrolysis products such as isothiocyanates (ITCs), sulfides, and thiosulfinates are formed. However, nitriles, epithionitriles, or amines can also result from GLSs. Here, the influence of hydrolysis time, extent of tissue disruption (chopping vs. homogenization), and addition of lemon juice or vinegar on the outcome of enzymatic hydrolysis of GLSs and SMCSO was investigated in red cabbage. Chopping led to partial hydrolysis of GLSs, whereas homogenization completely degraded GLSs but only had a small effect on SMCSO. Homogenization increased amine formation from alkenyl and methylthioalkyl ITCs, but not from methylsulfinylalkyl ITCs. Acidification inhibited formation of products from SMCSO. Further, it reduced nitrile and epithionitrile formation and stopped amine formation, thereby increasing ITC levels. Therefore, acidification is a valuable mean to enhance ITC levels in fresh Brassica foods.


Assuntos
Brassica , Isotiocianatos , Isotiocianatos/farmacologia , Cisteína/metabolismo , Hidrólise , Glucosinolatos/metabolismo , Aminas , Brassica/metabolismo , Sulfóxidos/metabolismo , Nitrilas , Concentração de Íons de Hidrogênio
19.
Pharmacol Res ; 201: 107107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354869

RESUMO

In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.


Assuntos
Anti-Infecciosos , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico
20.
Free Radic Biol Med ; 213: 443-456, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301976

RESUMO

M1 (LPS) macrophages are characterized by a high expression of pro-inflammatory mediators, and distinct metabolic features that comprise increased glycolysis, a broken TCA cycle, or impaired OXPHOS with augmented mitochondrial ROS production. This study investigated whether the phytochemical sulforaphane (Sfn) influences mitochondrial reprogramming during M1 polarization, as well as to what extent this can contribute to Sfn-mediated inhibition of M1 marker expression in murine macrophages. The use of extracellular flux-, metabolite-, and immunoblot analyses as well as fluorescent dyes indicative for mitochondrial morphology, membrane potential or superoxide production, demonstrated that M1 (LPS/Sfn) macrophages maintain an unbroken TCA cycle, higher OXPHOS rate, boosted fusion dynamics, lower membrane potential, and less superoxide production in their mitochondria when compared to control M1 (LPS) cells. Sustained OXPHOS and TCA activity but not the concomitantly observed high dependency on fatty acids as fuel appeared necessary for M1 (LPS/Sfn) macrophages to reduce expression of nos2, il1ß, il6 and tnfα. M1 (LPS/Sfn) macrophages also displayed lower nucleo/cytosolic acetyl-CoA levels in association with lower global and site-specific histone acetylation at selected pro-inflammatory gene promoters than M1 (LPS), evident in colorimetric coupled enzyme assays, immunoblot and ChIP-qPCR analyses, respectively. Supplementation with acetate or citrate was able to rescue both histone acetylation and mRNA expression of the investigated M1 marker genes in Sfn-treated cells. Overall, Sfn preserves mitochondrial functionality and restricts indispensable nuclear acetyl-CoA for histone acetylation and M1 marker expression in LPS-stimulated macrophages.


Assuntos
Histonas , Isotiocianatos , Lipopolissacarídeos , Sulfóxidos , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Acetilação , Acetilcoenzima A/metabolismo , Superóxidos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...