Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.976
Filtrar
1.
J Gene Med ; 26(7): e3717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967915

RESUMO

BACKGROUND: Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS: As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS: In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS: These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.


Assuntos
Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Deficiência Intelectual , Lentivirus , Proteínas Ativadoras de ras GTPase , Animais , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Terapia Genética/métodos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Deficiência Intelectual/terapia , Deficiência Intelectual/genética , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética , Modelos Animais de Doenças , Encéfalo/metabolismo
2.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2282-2293, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044591

RESUMO

The ubiquitin/proteasome system (UPS) plays a crucial role in maintaining cellular protein homeostasis. The catalytic activity of proteasome in the UPS is regulated by ß1 (PSMB6), ß2 (PSMB7), and ß5 (PSMB5) subunits. Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, inflammation, and oxidative stress can induce the replacement of ß1, ß2, and ß5 with their respective immuno-subunits ß1i (PSMB9), ß2i (PSMB10), and ß5i (PSMB8), which can be assembled into the immunoproteasome. Compared with the standard proteasome, the immunoproteasome exerts enhanced regulatory effects on immune responses, such as processing and presenting MHC class Ⅰ antigens, production of pro-inflammatory cytokines, and T cell differentiation and proliferation. Abnormal aggregation of immunoproteasomes can cause neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To explore the function of PSMB9 after bacterial infection, we constructed a lentivirus plasmid overexpressing PSMB9-eGFP-His and transfected the plasmid into HEK293T cells for packaging by using a triple-plasmid system in this study. After screening with puromycin, we obtained a stable human leukemia monocytic THP-1 cell line expressing the fusion protein of PSMB9. Western blotting (WB) and fluorescence microscopy verified the expression of the fusion protein in the stable THP-1 cells. Quantitative PCR (qPCR) was employed to measure the copies of PSMB9-eGFP in THP-1 cells. Immunofluorescence results found that eGFP-His did not affect the subcellular localization of PSMB9. The purification with nickel affinity chromatography confirmed that the fusion protein could be assembled into the 20S immunoproteasome and exhibited cleaving activity for fluorescent peptide substrates. These results indicated that the PSMB9-eGFP fusion gene was integrated into the chromosome, and could be stably expressed in the constructed THP-1 cell line. This cell line can be utilized for the research on subcellular localization, dynamic expression, and activity of PSMB9 in live cells at different infection conditions and disease stages. It also provides a model for the stable cell lines construction of other immunoproteasome subunits PSMB8 and PSMB10.


Assuntos
Proteínas de Fluorescência Verde , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células THP-1 , Lentivirus/genética , Proteínas Recombinantes de Fusão/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
3.
PLoS One ; 19(7): e0306719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976688

RESUMO

Previously, we reported the development of a human Aγ-globin gene lentivirus (LV), GbG, which expresses high levels of HbF to correct the sickle cell anemia (SCA) phenotype in the Berkeley SCA mouse model, and then modified the γ-globin gene by substituting glycine at codon 16 with aspartic acid in the Aγ-globin gene to generate GbGM LV. In the present study, we evaluated the long-term safety of human Aγ-globin gene carrying GbGM LV in wild-type mice after primary and secondary transplants of GbGM-modified hematopoietic stem cells (HSC) over 18 months. The safety of the GbGM bone marrow transplant was assessed by monitoring the effects on body weight, hematology, histopathology, malignancy formation, and survival. Mice transplanted with Mock-transduced and spleen focus forming virus (SFFV) γ-retroviral vector (RV)-transduced HSC served as negative and positive controls, respectively. The mean donor-cell engraftment was comparable across Mock, GbGM LV, and SFFV RV groups. There were no significant differences in body weight, clinical signs, immunophenotype, or histopathology in the GbGM-treated mice compared to controls. Four SFFV RV-treated mice, but none of the GbGM-treated mice, developed donor-derived, vector-positive lymphomas as demonstrated by flow cytometry analysis and in situ hybridization. These results highlight the safety of the administration of GbGM LV-modified HSC with long-term follow-up after primary and secondary transplants in mice. This data supported the initiation of phase 1/2 first-in-human SCA clinical trial in the United States.


Assuntos
Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Hemoglobinopatias , Lentivirus , gama-Globinas , Animais , Lentivirus/genética , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Camundongos , Humanos , gama-Globinas/genética , Hemoglobinopatias/terapia , Hemoglobinopatias/genética , Células-Tronco Hematopoéticas/metabolismo , Transplante Autólogo , Modelos Animais de Doenças
4.
Clin Exp Med ; 24(1): 155, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003408

RESUMO

Knowledge of the molecular pathogenesis of acute myeloid leukemia has advanced in recent years. Despite novel treatment options, acute myeloid leukemia remains a survival challenge for elderly patients. We have recently shown that the triphosphohydrolase SAMHD1 is one of the factors determining resistance to Ara-C treatment. Here, we designed and tested novel and simpler virus-like particles incorporating the lentiviral protein Vpx to efficiently and transiently degrade SAMHD1 and increase the efficacy of Ara-C treatment. The addition of minute amounts of lentiviral Rev protein during production enhanced the generation of virus-like particles. In addition, we found that our 2nd generation of virus-like particles efficiently targeted and degraded SAMHD1 in AML cell lines with high levels of SAMHD1, thereby increasing Ara-CTP levels and response to Ara-C treatment. Primary AML blasts were generally less responsive to VLP treatment. In summary, we have been able to generate novel and simpler virus-like particles that can efficiently deliver Vpx to target cells.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina/farmacologia , Citarabina/uso terapêutico , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Linhagem Celular Tumoral , Lentivirus/genética
5.
Cell Mol Life Sci ; 81(1): 305, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012348

RESUMO

Lentiviral vectors have markedly enhanced gene therapy efficiency in treating congenital diseases, but their long-term safety remains controversial. Most gene therapies for congenital eye diseases need to be carried out at early ages, yet the assessment of related risks to ocular development posed by lentiviral vectors is challenging. Utilizing single-cell transcriptomic profiling on human retinal organoids, this study explored the impact of lentiviral vectors on the retinal development and found that lentiviral vectors can cause retinal precursor cells to shift toward photoreceptor fate through the up-regulation of key fate-determining genes such as PRDM1. Further investigation demonstrated that the intron and intergenic region of PRDM1 was bound by PHLDA1, which was also up-regulated by lentiviral vectors exposure. Importantly, knockdown of PHLDA1 successfully suppressed the lentivirus-induced differentiation bias of photoreceptor cells. The findings also suggest that while lentiviral vectors may disrupt the fate determination of retinal precursor cells, posing risks in early-stage retinal gene therapy, these risks could potentially be reduced by inhibiting the PHLDA1-PRDM1 axis.


Assuntos
Diferenciação Celular , Vetores Genéticos , Lentivirus , Retina , Células-Tronco , Fatores de Transcrição , Humanos , Retina/metabolismo , Retina/citologia , Lentivirus/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Vetores Genéticos/metabolismo , Vetores Genéticos/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Organoides/metabolismo , Organoides/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Terapia Genética/métodos
6.
Viruses ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932120

RESUMO

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Assuntos
Vetores Genéticos , Proteína HN , Lentivirus , Vírus Sendai , Transdução Genética , Proteínas do Envelope Viral , Animais , Humanos , Vetores Genéticos/genética , Lentivirus/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Camundongos , Proteína HN/genética , Proteína HN/metabolismo , Linhagem Celular , Macaca fascicularis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Tropismo Viral , Células HEK293 , Técnicas de Transferência de Genes , Terapia Genética/métodos
7.
Cells ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920646

RESUMO

Dopaminergic neurons are the predominant brain cells affected in Parkinson's disease. With the limited availability of live human brain dopaminergic neurons to study pathological mechanisms of Parkinson's disease, dopaminergic neurons have been generated from human-skin-cell-derived induced pluripotent stem cells. Originally, induced pluripotent stem-cell-derived dopaminergic neurons were generated using small molecules. These neurons took more than two months to mature. However, the transcription-factor-mediated differentiation of induced pluripotent stem cells has revealed quicker and cheaper methods to generate dopaminergic neurons. In this study, we compared and contrasted three protocols to generate induced pluripotent stem-cell-derived dopaminergic neurons using transcription-factor-mediated directed differentiation. We deviated from the established protocols using lentivirus transduction to stably integrate different transcription factors into the AAVS1 safe harbour locus of induced pluripotent stem cells. We used different media compositions to generate more than 90% of neurons in the culture, out of which more than 85% of the neurons were dopaminergic neurons within three weeks. Therefore, from our comparative study, we reveal that a combination of transcription factors along with small molecule treatment may be required to generate a pure population of human dopaminergic neurons.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição/metabolismo , Lentivirus/genética , Lentivirus/metabolismo
8.
Front Immunol ; 15: 1404668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903492

RESUMO

Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shß2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.


Assuntos
Vetores Genéticos , Transplante de Coração , Antígenos de Histocompatibilidade Classe I , Lentivirus , Animais , Lentivirus/genética , Transplante de Coração/métodos , Vetores Genéticos/genética , Suínos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Perfusão/métodos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Microglobulina beta-2/genética , Citocinas/metabolismo , Engenharia Genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/imunologia , Humanos , RNA Interferente Pequeno/genética , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Proteínas Nucleares , Transativadores
9.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
10.
Sci Rep ; 14(1): 14325, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906906

RESUMO

Diabetic retinopathy (DR) is a multifactorial disease displaying vascular-associated pathologies, including vascular leakage and neovascularization, ultimately leading to visual impairment. However, animal models accurately reflecting these pathologies are lacking. Vascular endothelial growth factor A (VEGF-A) is an important factor in the development of micro- and macro-vascular pathology in DR. In this study, we evaluated the feasibility of using a cumate-inducible lentivirus (LV) mediated expression of vegf-a to understand DR pathology in vitro and in vivo. Retinal pigment epithelial cells (ARPE-19) were transduced with cumate-inducible LV expressing vegf-a, with subsequent analysis of vegf-a expression and its impact on cell proliferation, viability, motility, and permeability. Cumate tolerability in adult Wistar rat eyes was assessed as an initial step towards a potential DR animal model development, by administering cumate via intravitreal injections (IVT) and evaluating consequent effects by spectral domain optical coherence tomography (SD-OCT), flash electroretinography (fERG), ophthalmic examination (OE), and immunohistochemistry. Transduction of ARPE-19 cells with cumate-inducible LV resulted in ~ 2.5-fold increase in vegf-a mRNA and ~ threefold increase in VEGF-A protein secretion. Transduced cells displayed enhanced cell proliferation, viability, permeability, and migration in tube-like structures. However, IVT cumate injections led to apparent retinal toxicity, manifesting as retinal layer abnormalities, haemorrhage, vitreous opacities, and significant reductions in a- and b-wave amplitudes, along with increased microglial activation and reactive gliosis. In summary, while cumate-inducible LV-mediated vegf-a expression is valuable for in vitro mechanistic studies in cellular drug discovery, its use is not a feasible approach to model DR in in vivo studies due to cumate-induced retinal toxicity.


Assuntos
Retinopatia Diabética , Lentivirus , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Lentivirus/genética , Ratos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Humanos , Ratos Wistar , Proliferação de Células , Modelos Animais de Doenças , Linhagem Celular , Injeções Intravítreas , Masculino , Movimento Celular , Sobrevivência Celular , Tomografia de Coerência Óptica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética
11.
PLoS One ; 19(6): e0297817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833479

RESUMO

Lentiviral vectors derived from human immunodeficiency virus type I are widely used to deliver functional gene copies to mammalian cells for research and gene therapies. Post-transcriptional splicing of lentiviral vector transgene in transduced host and transfected producer cells presents barriers to widespread application of lentiviral vector-based therapies. The present study examined effects of indole derivative compound IDC16 on splicing of lentiviral vector transcripts in producer cells and corresponding yield of infectious lentiviral vectors. Indole IDC16 was shown previously to modify alternative splicing in human immunodeficiency virus type I. Human embryonic kidney 293T cells were transiently transfected by 3rd generation backbone and packaging plasmids using polyethyleneimine. Reverse transcription-quantitative polymerase chain reaction of the fraction of unspliced genomes in human embryonic kidney 293T cells increased up to 31% upon the indole's treatment at 2.5 uM. Corresponding yield of infectious lentiviral vectors decreased up to 4.5-fold in a cell transduction assay. Adjusting timing and duration of IDC16 treatment indicated that the indole's disruption of early stages of transfection and cell cycle had a greater effect on exponential time course of lentiviral vector production than its reduction of post-transcriptional splicing. Decrease in transfected human embryonic kidney 293T proliferation by IDC16 became significant at 10 uM. These findings indicated contributions by early-stage transfection, cell proliferation, and post-transcriptional splicing in transient transfection of human embryonic kidney 293T cells for lentiviral vector production.


Assuntos
Processamento Alternativo , Proliferação de Células , Vetores Genéticos , Indóis , Lentivirus , Transfecção , Humanos , Indóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Vetores Genéticos/genética , Lentivirus/genética , Transfecção/métodos , Células HEK293
12.
Cells ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891052

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vetores Genéticos , Lentivirus/genética , Animais , Proteínas Ribossômicas/genética , Mutação/genética , Edição de Genes/métodos
13.
Methods Mol Biol ; 2810: 147-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926278

RESUMO

Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome, the transgene is stably maintained, and long-term producing cells are established. Here, we describe the current state of the art and give details for lab-scale production of lentiviral vectors as well as for infection and titration of the viral vectors.


Assuntos
Vetores Genéticos , Lentivirus , Transdução Genética , Transdução Genética/métodos , Lentivirus/genética , Vetores Genéticos/genética , Humanos , Transgenes , Expressão Gênica , Linhagem Celular , Células HEK293 , Transfecção/métodos
14.
BMC Mol Cell Biol ; 25(1): 15, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741034

RESUMO

BACKGROUND: Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS: In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS: Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION: TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.


Assuntos
Eletroporação , Vetores Genéticos , Transfecção , Animais , Chlorocebus aethiops , Células Vero , Eletroporação/métodos , Transfecção/métodos , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos
15.
BMC Vet Res ; 20(1): 195, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741095

RESUMO

Small ruminant lentiviruses (SRLVs) are widespread and infect goats and sheep. Several reports also suggest that SRLVs can infect wild ruminants. The presence of specific antibodies against SRLVs has been identified in wild ruminants from Poland, but no studies have been conducted to detect proviral DNA of SRLVs in these animals. Therefore, the purpose of this study was to examine samples from Polish wild ruminants to determine whether these animals can serve as reservoirs of SRLVs under natural conditions. A total of 314 samples were tested from red deer (n = 255), roe deer (n = 52) and fallow deer (n = 7) using nested real-time PCR. DNA from positive real-time PCR samples was subsequently used to amplify a CA fragment (625 bp) of the gag gene, a 1.2 kb fragment of the pol gene and an LTR-gag fragment. Three samples (0.95%) were positive according to nested real-time PCR using primers and probe specific for CAEV (SRLV group B). All the samples were negative for the primers and probe specific for MVV (SRLV A group). Only SRLV LTR-gag sequences were obtained from two red deer. Phylogenetic analysis revealed that these sequences were more closely related to CAEV than to MVV. Our results revealed that deer can carry SRLV proviral sequences and therefore may play a role in the epidemiology of SRLVs. To our knowledge, this is the first study describing SRLV sequences from red deer.


Assuntos
DNA Viral , Cervos , Infecções por Lentivirus , Provírus , Animais , Cervos/virologia , Polônia/epidemiologia , Provírus/genética , Infecções por Lentivirus/veterinária , Infecções por Lentivirus/virologia , Infecções por Lentivirus/epidemiologia , DNA Viral/genética , Lentivirus/isolamento & purificação , Lentivirus/genética , Lentivirus/classificação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
16.
Methods Mol Biol ; 2799: 29-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727901

RESUMO

The expression and activity of ionotropic glutamate receptors control signal transduction at the excitatory synapses in the CNS. The NMDAR comprises two obligatory GluN1 subunits and two GluN2 or GluN3 subunits in different combinations. Each GluN subunit consists of four domains: the extracellular amino-terminal and agonist-binding domains, the transmembrane domain, and the intracellular C-terminal domain (CTD). The CTD interaction with various classes of intracellular proteins is critical for trafficking and synaptic localization of NMDARs. Amino acid mutations or the inclusion of premature stop codons in the CTD could contribute to the emergence of neurodevelopmental and neuropsychiatric disorders. Here, we describe the method of preparing primary hippocampal neurons and lentiviral particles expressing GluN subunits that can be used as a model to study cell surface expression and synaptic localization of NMDARs. We also show a simple method of fluorescence immunostaining of eGFP-tagged GluN2 subunits and subsequent microscopy technique and image analysis to study the effects of disease-associated mutations in the CTDs of GluN2A and GluN2B subunits.


Assuntos
Hipocampo , Neurônios , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Hipocampo/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Animais , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Células Cultivadas , Ratos , Humanos , Lentivirus/genética , Cultura Primária de Células/métodos , Expressão Gênica
17.
Mol Ther ; 32(7): 2223-2231, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796702

RESUMO

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.


Assuntos
Encéfalo , Estradiol , Genes Reporter , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Estradiol/análogos & derivados , Estradiol/farmacologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Expressão Gênica , RNA Interferente Pequeno/genética , Lentivirus/genética , Humanos
18.
Exp Mol Pathol ; 137: 104898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729059

RESUMO

INTRODUCTION: NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES: We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS: Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS: AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS: mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.


Assuntos
Interleucina-12 , Células Matadoras Naturais , Lentivirus , Sarcoma , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Lentivirus/genética , Sarcoma/imunologia , Sarcoma/genética , Sarcoma/patologia , Linhagem Celular Tumoral , Transdução Genética , Animais , Camundongos
19.
STAR Protoc ; 5(2): 103082, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38781076

RESUMO

Enteroids are in vitro models to study gastrointestinal pathologies and test personalized therapeutics; however, the inherent complexity of enteroids often renders standard gene editing approaches ineffective. Here, we introduce a refined lentiviral transfection protocol, ensuring sufficient lentiviral engagement with enteroids while considering spatiotemporal growth variability throughout the extracellular matrix. Additionally, we highlight a selection process for transduced cells, introduce a protocol to accurately measure transduction efficiency, and explore methodologies to gauge effects of gene knockdown on biological processes.


Assuntos
Western Blotting , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Lentivirus , RNA Interferente Pequeno , Humanos , Lentivirus/genética , Citometria de Fluxo/métodos , Técnicas de Silenciamento de Genes/métodos , RNA Interferente Pequeno/genética , Organoides/metabolismo , Vetores Genéticos/genética
20.
Eur J Pharm Biopharm ; 200: 114340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797222

RESUMO

Lentiviral vectors (LVVs) are used as a starting material to generate chimeric antigen receptor (CAR) T cells. Therefore, LVVs need to be carefully analyzed to ensure safety, quality, and potency of the final product. We evaluated orthogonal and complementary analytical techniques for their suitability to characterize particulate matter (impurities and LVVs) in pharmaceutical LVV materials at development stage derived from suspension and adherent manufacturing processes. Microfluidic resistive pulse sensing (MRPS) with additional manual data fitting enabled the assessment of mode diameters for particles in the expected LVV size range in material from adherent production. LVV material from a suspension process, however, contained substantial amounts of particulate impurities which blocked MRPS cartridges. Sedimentation-velocity analytical ultracentrifugation (SV-AUC) resolved the LVV peak in material from adherent production well, whereas in more polydisperse samples from suspension production, presence of particulate impurities masked a potential signal assignable to LVVs. In interferometric light microscopy (ILM) and nanoparticle tracking analysis (NTA), lower size detection limits close to âˆ¼ 70 nm resulted in an apparent peak in particle size distributions at the expected size for LVVs emphasizing the need to interpret these data with care. Interpretation of data from dynamic light scattering (DLS) was limited by insufficient size resolution and sample polydispersity. In conclusion, the analysis of LVV products manufactured at pharmaceutical scale with current state-of-the-art physical (nano)particle characterization techniques was challenging due to the presence of particulate impurities of heterogeneous size. Among the evaluated techniques, MRPS and SV-AUC were most promising yielding acceptable results at least for material from adherent production.


Assuntos
Vetores Genéticos , Lentivirus , Nanopartículas , Tamanho da Partícula , Ultracentrifugação , Lentivirus/genética , Nanopartículas/química , Ultracentrifugação/métodos , Humanos , Receptores de Antígenos Quiméricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA