Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.341
Filtrar
1.
Cell Death Dis ; 15(7): 474, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956060

RESUMO

Colorectal cancer (CRC) is one of the most common tumors of the digestive system worldwide. KRAS mutations limit the use of anti-EGFR antibodies in combination with chemotherapy for the treatment of CRC. Therefore, novel targeted therapies are needed to overcome the KRAS-induced oncogenesis. Recent evidence suggests that inhibition of PI3K led to ferroptosis, a nonapoptotic cell death closely related to KRAS-mutant cells. Here, we showed that a selective PI3Kδ inhibitor TYM-3-98 can suppress the AKT/mTOR signaling and activate the ferroptosis pathway in KRAS-mutant CRC cells in a concentration-dependent manner. This was evidenced by the lipid peroxidation, iron accumulation, and depletion of GSH. Moreover, the overexpression of the sterol regulatory element-binding protein 1 (SREBP1), a downstream transcription factor regulating lipid metabolism, conferred CRC cells greater resistance to ferroptosis induced by TYM-3-98. In addition, the effect of TYM-3-98 was confirmed in a xenograft mouse model, which demonstrated significant tumor suppression without obvious hepatoxicity or renal toxicity. Taken together, our work demonstrated that the induction of ferroptosis contributed to the PI3Kδ inhibitor-induced cell death via the suppression of AKT/mTOR/SREBP1-mediated lipogenesis, thus displaying a promising therapeutic effect of TYM-3-98 in CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Lipogênese , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Serina-Treonina Quinases TOR , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral , Mutação/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
2.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38970404

RESUMO

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Assuntos
Ferroptose , Lipogênese , Lipoproteínas LDL , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Masculino , Lipoproteínas LDL/metabolismo , Feminino , Peroxidação de Lipídeos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Pessoa de Meia-Idade , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Idoso
3.
Nat Commun ; 15(1): 6152, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034312

RESUMO

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.


Assuntos
Glutamato-Cisteína Ligase , Glutationa , Fígado , Fator 2 Relacionado a NF-E2 , Triglicerídeos , Animais , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fígado/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Camundongos , Triglicerídeos/metabolismo , Estresse Oxidativo , Masculino , Metabolismo dos Lipídeos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Oxirredução , Lipogênese/genética
4.
Int J Mol Med ; 54(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963051

RESUMO

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Lipogênese , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Humanos , Lipogênese/genética , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Hep G2 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/genética , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968125

RESUMO

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Assuntos
Proteínas de Drosophila , Via de Sinalização Wnt , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipócitos/metabolismo , Mobilização Lipídica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Lipólise , Lipogênese/genética , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/genética , Larva/metabolismo , Larva/genética , Transcrição Gênica , Homeostase
6.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990942

RESUMO

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Assuntos
Besouros , Lipogênese , Estações do Ano , Animais , Lipogênese/fisiologia , Besouros/metabolismo , Besouros/genética , Besouros/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Diapausa de Inseto , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
7.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997257

RESUMO

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.


Assuntos
Glucosefosfato Desidrogenase , Homeostase , Neoplasias Pulmonares , NADP , Oxirredução , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras) , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NADP/metabolismo , Camundongos , Humanos , Linhagem Celular Tumoral , Lipogênese/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Via de Pentose Fosfato/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos Knockout , Feminino , Mutação
8.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39007804

RESUMO

To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.


Assuntos
Membrana Basal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Retículo Endoplasmático , Lipogênese , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplasmático/metabolismo , Lipogênese/genética , Prenilação , Peroxissomos/metabolismo , Movimento Celular , Lisossomos/metabolismo
9.
Mol Nutr Food Res ; 68(12): e2300833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850176

RESUMO

SCOPE: Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS: This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION: Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.


Assuntos
Fatores de Transcrição ARNTL , Flavonas , Lipogênese , Hepatopatias Alcoólicas , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Animais , Flavonas/farmacologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Substâncias Protetoras/farmacologia , Etanol , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos
10.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892255

RESUMO

The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The ß-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Hepatócitos , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Fígado/metabolismo , Ritmo Circadiano/genética , Hepatócitos/metabolismo , Fenótipo , Masculino , Metaboloma , Deleção de Genes , Lipogênese/genética
11.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937853

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Assuntos
Trifosfato de Adenosina , Conexinas , Gluconeogênese , Lipogênese , Fígado , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Camundongos , Gluconeogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos Knockout , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Citocinas
12.
PLoS One ; 19(6): e0303191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924032

RESUMO

BACKGROUND: Gallbladder disease in people is frequently associated with disorders of lipid metabolism and metabolic syndrome. A recently emergent gallbladder disease of dogs, referred to as mucocele formation, is characterized by secretion of abnormal mucus by the gallbladder epithelium and is similarly associated with hyperlipidemia, endocrinopathy, and metabolic dysfunction. The cause of gallbladder mucocele formation in dogs is unknown. METHODS: A prospective case-controlled study was conducted to gain insight into disease pathogenesis by characterization of plasma lipid abnormalities in 18 dogs with gallbladder mucocele formation and 18 age and breed matched control dogs using direct infusion mass spectrometry for complex plasma lipid analysis. This analysis was complemented by histochemical and ultrastructural examination of gallbladder mucosa from dogs with gallbladder mucocele formation and control dogs for evidence of altered lipid homeostasis of the gallbladder epithelium. RESULTS: Gallbladder mucocele formation in dogs carried a unique lipidomic signature of increased lipogenesis impacting 50% of lipid classes, 36% of esterified fatty acid species, and 11% of complex lipid species. Broad enrichment of complex lipids with palmitoleic acid (16:1) and decreased abundance within complex lipids of presumptive omega-3 fatty acids eicosapentaenoic (20:5) and docosahexaenoic (22:6) was significant. Severe lipidosis of gallbladder epithelium pinpoints the gallbladder as involved causally or consequently in abnormal lipid metabolism. CONCLUSION: Our study supports a primary increase in lipogenesis in dogs with mucocele formation and abnormal gallbladder lipid metabolism in disease pathogenesis.


Assuntos
Doenças do Cão , Doenças da Vesícula Biliar , Vesícula Biliar , Lipogênese , Mucocele , Animais , Cães , Mucocele/metabolismo , Mucocele/patologia , Vesícula Biliar/metabolismo , Vesícula Biliar/patologia , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Doenças da Vesícula Biliar/metabolismo , Doenças da Vesícula Biliar/patologia , Doenças da Vesícula Biliar/veterinária , Feminino , Estudos de Casos e Controles , Masculino , Lipidoses/metabolismo , Lipidoses/patologia , Estudos Prospectivos , Epitélio/metabolismo , Epitélio/patologia , Metabolismo dos Lipídeos
13.
Life Sci ; 351: 122843, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880168

RESUMO

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Assuntos
Tecido Adiposo Marrom , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Regulação da Expressão Gênica , Lipogênese , Camundongos Knockout , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Tecido Adiposo Marrom/metabolismo , Camundongos , Lipogênese/genética , Masculino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Dieta Cetogênica , Nutrientes/metabolismo
14.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830399

RESUMO

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Assuntos
Eicosanoides , Glucocorticoides , Inflamação , Lipogênese , Fígado , Receptores de Glucocorticoides , Animais , Camundongos , Fígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
15.
Food Chem Toxicol ; 190: 114790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849044

RESUMO

Chlormequat chloride (CCC), a widely used plant growth regulator, is a choline analogue that has been shown to have endocrine-disrupting effects. Previous studies have shown that maternal exposure to CCC could induce hyperlipidemia and growth disruption in rat offspring. This study aims to further investigate the effects of peripubertal exposure to CCC on pubertal development and lipid homeostasis, as well as the underlying mechanisms. In vivo, male weanling rats were exposed to CCC (0, 20, 75 and 200 mg/kg bw/day) from post-natal day 21-60 via daily oral gavage. The results in rats showed that 75 mg/kg CCC treatment induced hepatic steatosis, predominantly microvesicular steatosis with a small amount of macrovesicular steatosis, in rat livers and 200 mg/kg CCC treatment induced liver damage including inflammatory infiltration, hepatic sinusoidal dilation and necrosis. In vitro, HepG2 cells were treated with CCC (0, 30, 60, 120, 240 and 480 µg/mL) for 24 h. And the results showed that CCC above 120 µg/mL induced an increase in triglyceride and neutral lipid levels of HepG2 cells. Mechanism exploration revealed that CCC treatment promoted the activation of mTOR/SREBP1 signalling pathway and inhibited activation of AMPK in both in vivo rat livers and in vitro HepG2 cells. Treatment with AMPK activator Acadesine (AICAR) could alleviate the lipid accumulation in HepG2 cells induced by CCC. Collectively, the present results indicate that CCC might induce hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition.


Assuntos
Proteínas Quinases Ativadas por AMP , Clormequat , Fígado Gorduroso , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Masculino , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ratos , Clormequat/toxicidade , Ratos Sprague-Dawley , Fígado/efeitos dos fármacos , Fígado/metabolismo
16.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791103

RESUMO

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Resistência à Insulina , Ovariectomia , Treinamento Resistido , Animais , Feminino , Ovariectomia/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Condicionamento Físico Animal , Estresse Oxidativo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Peso Corporal , Lipogênese
17.
Metabolism ; 157: 155938, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795769

RESUMO

BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.


Assuntos
Arginina , Lipogênese , Receptores X do Fígado , Fígado , Proteína-Arginina N-Metiltransferases , Lipogênese/genética , Lipogênese/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Camundongos , Metilação , Fígado/metabolismo , Arginina/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Masculino , Humanos , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
18.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718757

RESUMO

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Insulina , Fígado , Transdução de Sinais , Humanos , Insulina/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Animais , Metabolismo dos Lipídeos , Lipogênese
19.
J Diabetes Res ; 2024: 5511454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736904

RESUMO

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Assuntos
Adipogenia , Lipase , Animais , Masculino , Camundongos , Aciltransferases , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/metabolismo , Lipase/metabolismo , Lipase/genética , Lipogênese , Lipólise , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteína Desacopladora 1/metabolismo
20.
Cell Signal ; 120: 111232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763183

RESUMO

Aging affects lipid metabolism and can cause obesity as it is closely related to the disorder of many lipogenic regulatory factors. LncRNAs have been recognized as pivotal regulators across diverse biological processes, but their effects on lipogenesis in aging remain to be further studied. In this work, using RNA sequencing (RNA-Seq), we found that the expression of lncRNA AI504432 was significantly upregulated in the eWAT (epididymal white adipose tissue) of aging mice, and the knockdown of AI504432 notably reduced the expression of several adipogenic genes (e.g., Cebp/α, Srebp-1c, Fasn, Acaca, and Scd1) in senescent adipocytes. The bioinformatics investigation revealed that AI504432 possessed a binding site for miR-1a-3p, and the discovery was verified by the luciferase reporter assay. The expression of Fasn was increased upon the inhibition of miR-1a-3p but restored upon the simultaneous silencing of AI504432. Taken together, our results suggested that AI504432 controlled lipogenesis through the miR-1a-3p/Fasn signaling pathway. The findings may inspire new therapeutic approaches to target imbalanced lipid homeostasis due to aging.


Assuntos
Adipócitos , Senescência Celular , Ácido Graxo Sintase Tipo I , Lipogênese , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Lipogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Adipócitos/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Regulação para Cima/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Envelhecimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA