Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.494
Filtrar
1.
Int J Nanomedicine ; 19: 6485-6497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946886

RESUMO

Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.


Assuntos
Inibidores da Angiogênese , Neovascularização Patológica , Nanomedicina Teranóstica , Humanos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/administração & dosagem , Nanomedicina Teranóstica/métodos , Neovascularização Patológica/tratamento farmacológico , Animais , Lipossomos/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Oligonucleotídeos/química , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , Proteínas/química , Proteínas/administração & dosagem , Lipídeos/química , Nanopartículas/química
2.
J Transl Med ; 22(1): 621, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961395

RESUMO

BACKGROUND: The tumor microenvironment is profoundly heterogeneous particularly when comparing sites of metastases. Establishing the extent of this heterogeneity may provide guidance on how best to design lipid-based drug delivery systems to treat metastatic disease. Building on our previous research, the current study employs a murine model of metastatic cancer to explore the distribution of ~ 100 nm liposomes. METHODS: Female NCr nude mice were inoculated with a fluorescently labeled, Her2/neu-positive, trastuzumab-resistant breast cancer cell line, JIMT-1mkate, either in the mammary fat pad to create an orthotopic tumor (OT), or via intracardiac injection (IC) to establish tumors throughout the body. Animals were dosed with fluorescent and radio-labeled liposomes. In vivo and ex vivo fluorescent imaging was used to track liposome distribution over a period of 48 h. Liposome distribution in orthotopic tumors was compared to sites of tumor growth that arose following IC injection. RESULTS: A significant amount of inter-vessel heterogeneity for DiR distribution was observed, with most tumor blood vessels showing little to no presence of the DiR-labelled liposomes. Further, there was limited extravascular distribution of DiR liposomes in the perivascular regions around DiR-positive vessels. While all OT tumors contained at least some DiR-positive vessels, many metastases had very little or none. Despite the apparent limited distribution of liposomes within metastases, two liposomal drug formulations, Irinophore C and Doxil, showed similar efficacy for both the OT and IC JIMT-1mkate models. CONCLUSION: These findings suggest that liposomal formulations achieve therapeutic benefits through mechanisms that extend beyond the enhanced permeability and retention effect.


Assuntos
Antineoplásicos , Lipossomos , Camundongos Nus , Metástase Neoplásica , Animais , Linhagem Celular Tumoral , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Humanos , Resultado do Tratamento , Camundongos
3.
J Nanobiotechnology ; 22(1): 396, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965546

RESUMO

Failed skin wound healing, through delayed wound healing or wound dehiscence, is a global public health issue that imposes significant burdens on individuals and society. Although the application of growth factor is an effective method to improve the pace and quality of wound healing, the clinically approved factors are limited. Parathyroid hormone (PTH) demonstrates promising results in wound healing by promoting collagen deposition and cell migration, but its application is limited by potentially inhibitory effects when administered continuously and locally. Through partially replacing and repeating the amino acid domains of PTH(1-34), we previously designed a novel PTH analog, PTH(3-34)(29-34) or MY-1, and found that it avoided the inhibitory effects of PTH while retaining its positive functions. To evaluate its role in wound healing, MY-1 was encapsulated in liposomes and incorporated into the methacryloyl gelatin (GelMA) hydrogel, through which an injectable nanocomposite hydrogel (GelMA-MY@Lipo, or GML) was developed. In vitro studies revealed that the GML had similar properties in terms of the appearance, microstructure, functional groups, swelling, and degradation capacities as the GelMA hydrogel. In vitro drug release testing showed a relatively more sustainable release of MY-1, which was still detectable in vivo 9 days post-application. When the GML was topically applied to the wound areas of rat models, wound closure as well as tensile strength were improved. Further studies showed that the effects of GML on wound repair and tensile strength were closely related to the promotion of fibroblast migration to the wound area through the controlled release of MY-1. Mechanically, MY-1 enhanced fibroblast migration by activating PI3K/AKT signaling and its downstream molecule, Rac1, by which it increased fibroblast aggregation in the early stage and resulting in denser collagen deposition at a later time. Overall, these findings demonstrated that the nanocomposite hydrogel system promoted skin wound healing and increased tensile strength, thus offering new potential in the treatment of wound healing.


Assuntos
Movimento Celular , Fibroblastos , Hidrogéis , Lipossomos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Resistência à Tração , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Lipossomos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Hidrogéis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Masculino , Camundongos , Gelatina/química , Pele/efeitos dos fármacos , Pele/metabolismo
4.
J Nanobiotechnology ; 22(1): 393, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965602

RESUMO

BACKGROUND: The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT: Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION: The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Lipossomos , Fármacos Neuroprotetores , Piroptose , Ratos Sprague-Dawley , Saponinas , Animais , Saponinas/farmacologia , Saponinas/química , Piroptose/efeitos dos fármacos , Ratos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lipossomos/química , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Células PC12 , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
5.
Methods Enzymol ; 700: 295-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971604

RESUMO

The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.


Assuntos
Bicamadas Lipídicas , Lipossomos , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Lipossomos/química , Bicamadas Lipídicas/química , Difração de Nêutrons/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos
6.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949588

RESUMO

Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Lipossomas Unilamelares , Cardiolipinas/química , Corantes Fluorescentes/química , Lipossomas Unilamelares/química , Propriedades de Superfície , Lipossomos/química , Cloreto de Sódio/química , Tensoativos/química , Estrutura Molecular
7.
Methods Mol Biol ; 2816: 41-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977587

RESUMO

This chapter provides an overview of the diverse range of applications associated with nanoparticles. The application of nanoparticles in the medical field has garnered considerable attention due to their unique properties and versatile compositions. They have shown promise in the treatment of cancer, fungal and viral infections, and pain management. These systems provide numerous benefits, such as increased drug stability, improved bioavailability, and targeted delivery to specific tissues or cells. The objective of this chapter is to provide a brief analysis of the differences between nanoparticles and lipid particles, focusing particularly on the importance of nanoparticle size and composition in their interactions with lipids. Additionally, the applications of nanoparticles in lipid signaling will be discussed, considering the vital roles lipids play in cellular signaling pathways. Nanoparticles have shown immense potential in the regulation and control of medical pathways. In this case, we will focus on the manufacture of liposomes, a type of nanoparticle composed of lipids. The reason behind the extensive investigation into liposomes as drug delivery vehicles is their remarkable biocompatibility and adaptability. This section will provide insights into the methods and techniques employed for liposome formulation.


Assuntos
Lipídeos , Lipossomos , Nanopartículas , Transdução de Sinais , Nanopartículas/química , Humanos , Lipossomos/química , Lipídeos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Metabolismo dos Lipídeos
8.
Int J Nanomedicine ; 19: 6693-6715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979534

RESUMO

Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Nanopartículas/química , Lipídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Terapia Genética/métodos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos
9.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971796

RESUMO

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Assuntos
Apoptose , Medula Óssea , Citarabina , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas , Leucemia , Lipossomos , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Citarabina/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/metabolismo , Apoptose/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antígenos CD18/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000293

RESUMO

Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.


Assuntos
Módulo de Elasticidade , Lipossomos , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Lipossomos/química , Tamanho Celular , Modelos Biológicos , Ácido Hialurônico/química , Fenômenos Biomecânicos , Humanos
11.
Emerg Microbes Infect ; 13(1): 2377606, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38979723

RESUMO

The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.


Assuntos
Vacinas contra a AIDS , Linfócitos T CD8-Positivos , Infecções por HIV , Vacinas de mRNA , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Feminino , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , HIV-1/imunologia , HIV-1/genética , Nanopartículas/química , Protease de HIV/genética , Protease de HIV/imunologia , Quênia , Profissionais do Sexo , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos/imunologia , Epitopos/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Lipossomos
12.
J Hematol Oncol ; 17(1): 53, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030582

RESUMO

Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.


Assuntos
Imunoterapia , Lipídeos , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Lipídeos/química , Animais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Lipossomos/química
13.
J Nanobiotechnology ; 22(1): 430, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033108

RESUMO

Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Fe-loaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence.


Assuntos
Vesículas Extracelulares , Imunoterapia , Macrófagos , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Imunoterapia/métodos , Vesículas Extracelulares/química , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Feminino , Lipossomos/química , Concentração de Íons de Hidrogênio , Microambiente Tumoral/efeitos dos fármacos , Humanos , Ferroptose/efeitos dos fármacos , Nanopartículas/química
14.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3515-3525, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041123

RESUMO

Regulating the process of epithelial-mesenchymal transition(EMT) is an essential strategy to inhibit tumor growth and metastasis. This study is based on the EMT process of retinoblastoma and constructs quercetin(QUE) and doxorubicin(DOX) co-loaded liposome(QD Lipo) to investigate the therapeutic effect and mechanisms of combined QUE and DOX treatment on retinoblastoma. Single-factor experiments were conducted to optimize the prescription process of QD Lipo. Eventually, spherical particles with a diameter of(108.87±1.93) nm, a PDI of 0.13±0.02, and a Zeta potential of(-34.83±1.92) mV were obtained. The encapsulation rates of QUE and DOX were 96.20%±4.40% and 91.17%±4.41%, respectively. Y79 human retinoblastoma cells were used as an in vitro cellular model, and confocal microscopy demonstrated that QD Lipo could enhance Y79 uptake efficiency. The CCK-8 assay confirmed that the optimal combination therapy effect of QUE and DOX occurred at a mass ratio of 1∶1 to 1∶2. Flow cytometry showed that QD Lipo enhanced the induction of apoptosis in Y79 cells. Western blot analysis revealed that QD Lipo significantly reduced the expression of EMT pathway-related proteins vimentin and α-SMA. Fluorescence assays detected a significant decrease in ROS levels in Y79 cells after treatment with QD. These results indicated that liposomal co-delivery of QUE and DOX can enhance drug delivery efficiency to retinoblastoma cells, inhibit the EMT process in retinoblastoma by downregulating ROS levels, and enhance the cytotoxicity of DOX against retinoblastoma.


Assuntos
Doxorrubicina , Transição Epitelial-Mesenquimal , Lipossomos , Quercetina , Retinoblastoma , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Retinoblastoma/tratamento farmacológico , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipossomos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Espécies Reativas de Oxigênio/metabolismo
15.
Drug Dev Res ; 85(5): e22234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39041350

RESUMO

Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 µg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of -15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.


Assuntos
Sobrevivência Celular , Fator de Crescimento Epidérmico , Lipossomos , Proteínas Recombinantes , Humanos , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Tamanho da Partícula , Administração Cutânea , Fibroblastos/efeitos dos fármacos , Liberação Controlada de Fármacos
16.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999055

RESUMO

Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.


Assuntos
Barreira Hematoencefálica , Inflamação , Nanopartículas , Fator A de Crescimento do Endotélio Vascular , Humanos , Nanopartículas/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipídeos/química , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese , Lipossomos
17.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000028

RESUMO

Gene therapy is one of the most promising techniques for treating genetic diseases and cancer. The current most important problem in gene therapy is gene delivery. Viral and non-viral vectors like liposomes, used for gene delivery, have many limitations. We have developed new hybrid peptides by combining cell-penetrating peptides (CPPs) with the DNA-binding domain of the human histone H4 protein. These small peptides bind to DNA molecules through their histone domain, leaving the CPP part free and available for binding and penetration into cells, forming complexes that we named "peptosomes". We evaluated the transfection efficiency of several hybrid peptides by delivering a plasmid carrying the green fluorescent protein gene and following its expression by fluorescent microscopy. Among several hybrid peptides, TM3 achieved a gene delivery efficiency of 76%, compared to 52% for Lipofectamine 2000. TM3 peptosomes may become important gene delivery tools with several advantages over current gene delivery agents.


Assuntos
Peptídeos Penetradores de Células , Lipossomos , Transfecção , Humanos , Lipossomos/química , Peptídeos Penetradores de Células/química , Transfecção/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas de Transferência de Genes , Plasmídeos/genética , Terapia Genética/métodos , Histonas/metabolismo , Histonas/química , Histonas/genética , Células HeLa
18.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955335

RESUMO

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Assuntos
Nanogéis , Psoríase , Absorção Cutânea , Psoríase/tratamento farmacológico , Psoríase/patologia , Animais , Nanogéis/química , Lecitinas/química , Pele/metabolismo , Pele/patologia , Tamanho da Partícula , Lipossomos/química , Polietilenoglicóis/química , Glycine max/química , Ratos , Masculino , Imiquimode/química , Portadores de Fármacos/química , Polietilenoimina/química , Difração de Raios X , Etanol/química , Acrilatos
19.
Int J Mol Med ; 54(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963035

RESUMO

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Lipossomos , Neoplasias Pulmonares , Aglutinina de Amendoim , Cisplatino/farmacologia , Cisplatino/administração & dosagem , Lipossomos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Animais , Aglutinina de Amendoim/química , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Feminino , Sistemas de Liberação de Medicamentos/métodos
20.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978013

RESUMO

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Lipossomos , Staphylococcus aureus Resistente à Meticilina , Vancomicina , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Lipossomos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA