Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.348
Filtrar
1.
Luminescence ; 39(6): e4794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887175

RESUMO

Various 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates possessing electron-withdrawing substituents have been synthesized. The effect of substituents on the stability of the acridinium esters (AEs) at various temperatures in different buffers and the chemiluminescent properties have been examined. There was little correlation between the chemiluminescent properties of AEs and the pKa values of their associated phenols, but the steric effects of the ortho-substituents in the phenoxy group, as well as their electron-withdrawing natures, seem to play an important role in determining the properties. In general, when two identical substituents are present in the 2- and 6-positions, the compound is significantly more stable than when only a single substituent is present, presumably because of greater steric hindrance from the second group. The exception is the 2,6-difluorophenyl ester, which is less stable than the 2-fluorophenyl ester, presumably because the fluoro group is small. Addition of a third electron-withdrawing substituent at the 4-position, where it has no steric influence, typically increases susceptibility to decomposition. The presence of a nitro group has a significant destabilizing effect on AEs. Of the AEs studied, the 4-chlorophenyl ester showed the greatest chemiluminescent yield, while the 2-iodo-6-(trifluoromethyl)phenyl ester group showed the greatest stability in low pH buffers.


Assuntos
Acridinas , Luminescência , Mesilatos , Acridinas/química , Acridinas/síntese química , Mesilatos/química , Estrutura Molecular , Medições Luminescentes
2.
Luminescence ; 39(6): e4807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890121

RESUMO

ZnAl2O4 with a typical spinel structure is highly expected to be a novel rare-earth-free ion-activated oxide phosphor with red emission, which holds high actual meaning for advancing phosphor-converted light-emitting diode (pc-LED) lighting. Among the rare-earth-free activators, Mn4+ ions have emerged as one of the most promising activators. Considering the price advantage of MnCO3 generating Mn2+ ions and the charge compensation effect potentially obtaining Mn4+ ions from Mn2+ ions, this research delves into a collection of ZnAl2O4:Mn2+(Mn4+), x Li+ (x = 0%-40%) phosphors with Li+ as co-dopant and MnCO3 as Mn2+ dopant source prepared by a high temperature solid-state reaction method. The lattice structure was investigated using X-ray diffraction (XRD), photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Results suggest a relatively high probability of Li+ ions occupying Zn2+ lattice sites. Furthermore, Li+ ion doping was assuredly found to facilitate the oxidization of Mn2+ to Mn4+, leading to a shift of luminescence peak from 516 to 656 nm. An intriguing phenomenon that the emission color changed with the Li+ doping content was also observed. Meanwhile, the luminescence intensity and quantum yield (QY) at different temperatures, as well as the relevant thermal quenching mechanism, were determined and elucidated detailedly.


Assuntos
Lítio , Luminescência , Manganês , Manganês/química , Lítio/química , Cátions/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Medições Luminescentes , Óxidos/química , Difração de Raios X , Zinco/química
3.
Luminescence ; 39(6): e4809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890149

RESUMO

Utilizing the structure characteristic of KCaY (PO4)2 crystal, the site distribution of Eu2+ in KCaY (PO4)2:Eu phosphor coactivated with Eu2+ and Eu3+ ions is tuned. Upon 393-nm excitation, the as-prepared phosphor exhibits a broadband emission of Eu2+ peaked at ~ 475 nm and a typical red emission of Eu3+ with a strong 5D0-7F1 emission at ~ 591 nm. The luminescence color of the phosphor can be adjusted from blue to green, white, yellow, and red. The increasing concentration of Sr2+ and Eu2+ results in a blue shifting of Eu2+ emission. The increasing concentration of Eu3+ results in a red shifting of Eu2+ emission and an enhanced red emission of Eu3+. The luminescence behaviors of the phosphors are analyzed in terms of the site distribution of Eu2+ and Eu3+. A single-phase white light emitting was achieved in KCaY (PO4)2:Eu phosphor upon UV and NUV light excitation, indicating that the phosphor has potential application in white lighting.


Assuntos
Európio , Luminescência , Substâncias Luminescentes , Európio/química , Substâncias Luminescentes/química , Medições Luminescentes , Fosfatos/química
4.
Luminescence ; 39(6): e4796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850210

RESUMO

The mechanism of bioluminescence in the luminous land snails remains largely unknown. Here, we analyzed basic biochemical properties of the luminous land snail, Quantula weinkauffiana. The luminescence activity was extracted from the light organ located near the mouth using a neutral buffer containing detergent. The reaction of the crude buffer extract was triggered by the addition of only hydrogen peroxide (H2O2). These results are inconsistent with the single precedent report on the bioluminescence in the Quantula striata by Shimomura and Haneda in 1986, in which the luminescence of the buffer extract (without detergent) from the light organ was induced by the coaddition of three indispensable components H2O2, ferrous ion, and 2-mercaptoethanol. Based on the present findings, we suggested that an insoluble photoprotein is involved in the bioluminescence of the luminous land snails and the luminescence reaction is simply triggered by H2O2.


Assuntos
Peróxido de Hidrogênio , Luminescência , Caramujos , Animais , Caramujos/química , Peróxido de Hidrogênio/química , Medições Luminescentes
5.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834271

RESUMO

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Corantes Fluorescentes , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Camundongos , Humanos , Raios Infravermelhos , Imagem Óptica , Glutationa/análise , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Cisteína/análise , Rodaminas/química , Rodaminas/toxicidade , Homocisteína/análise , Luminescência
6.
Mikrochim Acta ; 191(7): 399, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877162

RESUMO

Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is one of the most common addictive substances, causing the trace detection of nicotine to be very necessary. Herein, we designed and prepared a functionalized nanocomposite CS-PAA (NaYF4:19.5%Yb,0.5%Tm@NaYF4-PAA) using a simple method. The nicotine concentration was quantitatively detected through the inhibition of choline oxidase activity by nicotine and the luminescence intensity of CS-PAA being quenched by Fe3+. The mechanism of Fe3+ quenching CS-PAA emission was inferred by luminescence lifetime and UV-vis absorption spectra characterization. During the nicotine detection, both excitation (980 nm) and emission (802 nm) wavelengths of CS-PAA enable the avoidance of the interference of background fluorescence in complicated food objects, thus providing high selectivity and sensitivity with a linear range of 5-750 ng/mL and a limit of detection of 9.3 nM. The method exhibits an excellent recovery and relative standard deviation, indicating high accuracy and repeatability of the detection of nicotine.


Assuntos
Colina , Limite de Detecção , Nicotina , Nicotina/análise , Nicotina/química , Colina/química , Colina/análise , Nanocompostos/química , Medições Luminescentes/métodos , Oxirredutases do Álcool/química , Luminescência
7.
Sci Rep ; 14(1): 13238, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853171

RESUMO

The European brittle star Amphiura filiformis emits blue light, via a Renilla-like luciferase, which depends on the dietary acquisition of coelenterazine. Questions remain regarding luciferin availability across seasons and the persistence of luminous capabilities after a single boost of coelenterazine. To date, no study has explored the seasonal, long-term monitoring of these luminous capabilities or the tracking of luciferase expression in photogenic tissues. Through multidisciplinary analysis, we demonstrate that luminous capabilities evolve according to the exogenous acquisition of coelenterazine throughout adult life. Moreover, no coelenterazine storage forms are detected within the arms tissues. Luciferase expression persists throughout the seasons, and coelenterazine's presence in the brittle star diet is the only limiting factor for the bioluminescent reaction. No seasonal variation is observed, involving a continuous presence of prey containing coelenterazine. The ultrastructure description provides a morphological context to investigate the green autofluorescence signal attributed to coelenterazine during luciferin acquisition. Finally, histological analyses support the hypothesis of a pigmented sheath leading light to the tip of the spine. These insights improve our understanding of the bioluminescence phenomenon in this burrowing brittle star.


Assuntos
Pirazinas , Estações do Ano , Animais , Pirazinas/metabolismo , Imidazóis , Equinodermos , Luminescência , Luciferases/metabolismo , Luciferases/genética , Medições Luminescentes/métodos , Luz
8.
Sci Total Environ ; 940: 173588, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823693

RESUMO

Currently, risk assessment and pollution management in mines primarily focus on toxic metals, with the flotation agents being overlooked. However, the combined effects of metals and flotation agents in mines remain largely unknown. Therefore, this study aimed to evaluate the combined effects of Cd and two organic flotation agents (ethyl xanthate (EX) and diethyldithiocarbamate (DDTC)), and the associated mechanisms. The results showed that Cd + EX and Cd + DDTC exhibited synergistic toxicity. The EC50 values for luminescent bacteria were 1.6 mg/L and 1.0 mg/L at toxicity unit ratios of 0.3 and 1, respectively. The synergistic effects were closely related with the formation of Cd(EX)2 and Cd(DDTC)2 micro/nano particles, with nano-particles exhibiting higher toxicity. We observed severe cell membrane damage and cell shrinkage of the luminescent bacteria, which were probably caused by secondary harm to cells through the released CS2 during their decomposition inside cells. In addition, these particles induced toxicity by altering cellular levels of biochemical markers and the transcriptional levels of transport proteins and lipoproteins, leading to cell membrane impairment and DNA damage. This study has demonstrated that particulates formed by Cd and flotation agents contribute to the majority of the toxicity of the binary mixture. This study helps to better understand the complex ecological risk of inorganic metals and organic flotation agents in realistic mining environments.


Assuntos
Cádmio , Cádmio/toxicidade , Nanopartículas/toxicidade , Ditiocarb/toxicidade , Luminescência , Bactérias/efeitos dos fármacos
9.
Luminescence ; 39(6): e4805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859619

RESUMO

In this study, a chemiluminescence (CL) method was developed to determine diphenoxylate in tablets and human plasma. This is the first CL method proposed to determine diphenoxylate. Creating three-dimensional data caused the parallel factor analysis algorithm (PARAFAC) to be used for the first time in CL methods. The method is based on the fact that diphenoxylate enhances the weak CL produced in the reaction of Ru(phen)3 2+ and acidic Ce(IV), and the concentration of Ce(IV) solution has a different effect on the CL response of diphenoxylate and the blank plasma. The calibration curve was linear from 4.0 × 10-8 to 1.6 × 10-6 mol L-1 (R2 = 0.9954), and the detection limit was 1.3 × 10-8 mol L-1 (S/N = 3). The sampling rate was about 30 samples per hour, and the % RSD for 10 repeated measurements of 4 × 10-7 mol L-1 diphenoxylate was 5.4%. The interference effects of some ions, amino acids, and common additives were also investigated. The CL method was successfully used to determine diphenoxylate in tablets, and the results were statistically confirmed by the reference method. The proposed CL method and the PARAFAC algorithm were successfully used to determine the concentration of diphenoxylate in human blood plasma samples.


Assuntos
Medições Luminescentes , Comprimidos , Humanos , Comprimidos/química , Medições Luminescentes/métodos , Luminescência , Limite de Detecção , Algoritmos , Oxalatos/química , Oxalatos/sangue , Análise Fatorial
10.
Biosens Bioelectron ; 258: 116343, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718636

RESUMO

Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.


Assuntos
Técnicas Biossensoriais , Poluentes Químicos da Água , Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , Corantes Fluorescentes/química , Fluorocarbonos/química , Luminescência , Silicatos/química , Rodaminas/química , Limite de Detecção , Pontos Quânticos/química
11.
J Am Chem Soc ; 146(20): 13875-13885, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718165

RESUMO

Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.


Assuntos
Pirazinas , Teoria Quântica , Pirazinas/química , Pirazinas/metabolismo , Renilla/enzimologia , Luciferases/química , Luciferases/metabolismo , Luminescência , Animais , Imidazóis/química , Benzenoacetamidas
12.
Food Chem ; 453: 139678, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759439

RESUMO

Converting solid iron oxide nanoparticles into a "pseudo-water-soluble" form before applying them to chemiluminescent reactions leads to enhance the chemiluminescence intensity. Using 8-hydroxyquinoline as a colloidal agent, a new, fast, and simple method of synthesizing pseudo-water-soluble Fe2O3 nanoparticles was developed. SEM, VSM, SAED, HRTEM, XRD, FTIR, and EDS techniques were used to characterize the synthesized Fe2O3 nanoparticles. Fe2O3 nanoparticles synthesized in this study have superior peroxidase-like activity (POD-like) and are stable under a wide range of pH and temperature. The chemiluminescence reaction of luminol-H2O2 is intensified and accelerated by a colloidal solution of Fe-nanoparticles/8-hydroxyquinoline. Reverse-flow injection analysis was employed to determine brilliant blue. A chemiluminescent sensing method based on iron oxide nanozymes was utilized for sensitive detection of the brilliant blue synthetic dye, achieving a limit of detection of 0.06 mg/L and a dynamic linear range of 0.1 to 50 mg/L. The recovery and relative standard deviations of real samples were found to be 97.83-99.93% and 0.09-3.07%, respectively. An analysis of a sample, from injection to obtaining the maximum peak, could be performed in less than one minute.


Assuntos
Benzenossulfonatos , Bebidas , Compostos Férricos , Gelatina , Medições Luminescentes , Compostos Férricos/química , Catálise , Medições Luminescentes/métodos , Gelatina/química , Bebidas/análise , Benzenossulfonatos/química , Luminescência
13.
Anal Chem ; 96(22): 9270-9277, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770656

RESUMO

Developing a specific, sensitive, rapid, and on-site method for detecting pathogenic bacteria in food samples is critical to ensuring public safety. This article demonstrates a CRISPR/Cas13a system and a chemiluminescence resonance energy transfer (CRET) (CRISPR/Cas 13a-assisted CRET)-based strategy for sensitive and on-site detection of pathogenic bacteria in real samples. Once the hybrid double strand of aptamerS. aureus-cRNA recognizes the target model bacteria of Staphylococcus aureus (S. aureus), the released cRNA would bind with CRISPR/Cas 13a to form a complex of cRNA-CRISPR/Cas 13a, which could cleave the RNA molecule in the detecting probe of horseradish peroxidase (HRP) modified-gold nanoparticles (AuNPs) linked by RNA (AuNPs-RNA-HRP), resulting in an enhanced chemiluminescence signal due to the CRET "OFF" phenomenon after introducing the chemiluminescence substrate of luminol. The CRISPR/Cas 13a-assisted CRET strategy successfully detected S. aureus in drinking water and milk with detection limits of 20 and 30 cfu/mL, respectively, within the recovery of 90.07-105.50%. Furthermore, after integrating with an immunochromatographic test strip (ICTS), the CRISPR/Cas 13a-assisted CRET strategy achieved the on-site detection of as low as 102 cfu/mL of S. aureus in drinking water and milk via a smartphone, which is about 10 times lower than that in the previously reported AuNPs-based colorimetric ICTS, demonstrating a convenient and sensitive detection method for S. aureus in real samples.


Assuntos
Sistemas CRISPR-Cas , Ouro , Leite , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Sistemas CRISPR-Cas/genética , Ouro/química , Leite/microbiologia , Animais , Medições Luminescentes , Água Potável/microbiologia , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Luminescência
14.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762934

RESUMO

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Assuntos
Durapatita , Európio , Ácido Fólico , Nanopartículas , Humanos , Ácido Fólico/química , Európio/química , Nanopartículas/química , Células HeLa , Durapatita/química , Luminescência , Microscopia de Fluorescência , Propilaminas/química , Tamanho da Partícula , Substâncias Luminescentes/química
15.
Food Chem ; 454: 139778, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805918

RESUMO

The safety of luminescence sensors and probes used in food packaging should be seriously considered, while most luminescence sensors were artificially synthesized with unclear toxicity, and cannot be directly used as indicators that were in contact with food. To overcome this problem, a humidity indicator based on an edible plant tissue was developed without any chemical processing. We found that garlic bulbs could emit significant persistent luminescence after drying at room temperature. The luminescence lifetime decreases from hundreds of milliseconds to tens of milliseconds as humidity increases. The long-lived luminescence could easily be detected through smartphones without any sophisticated instruments. The edible garlic is expected to be used as a humidity indicator in food packaging without worrying about food safety. Furthermore, the interference of scattered light and short-lived fluorescence from foods and packages can be eliminated in time-resolved luminescence imaging, greatly increasing the signal-to-noise ratio.


Assuntos
Embalagem de Alimentos , Umidade , Luminescência , Plantas Comestíveis , Smartphone , Embalagem de Alimentos/instrumentação , Plantas Comestíveis/química , Alho/química , Medições Luminescentes/instrumentação
16.
Int J Biol Macromol ; 271(Pt 1): 132341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821792

RESUMO

To address the growing challenge of counterfeit prevention, this study developed a novel anti-counterfeiting ink system based on bacterial cellulose nanocrystals (BCNC) and lanthanide (Er, Yb)­nitrogen (N) co-dropped graphene quantum dots (GQDs), which exhibited both photoluminescence (PL) and upconversion photoluminescence (UCPL) fluorescent properties as well as excellent rheological characteristics. The Er/Yb/N-GQDs with positive charges were synthesized by a one-step hydrothermal method and subsequently assembled with negatively charged BCNC through electrostatic self-assembly to fabricate a novel nanohybrid, Er/Yb/N-GQDs-BCNC. Raman spectroscopy results indicated an enhancement in the graphitization of GQDs due to lanthanide modification. The TEM results demonstrated a homogeneous distribution of Er/Yb/N-GQDs on BCNC, while XRD, FTIR, and XPS analyses confirmed their physical binding, thus validating the successful synthesis of novel nanohybrids. Then, Er/Yb/N-GQDs-BCNC was introduced into PVA waterborne ink and exhibited dual anti-counterfeiting properties by emitting blue fluorescence at Em 440 nm under Ex 370 nm and green fluorescence at Em 550 nm under Ex 980 nm. Furthermore, the incorporation of BCNC significantly enhanced the thixotropic behavior and yield stress of the PVA waterborne ink. This enhancement made the dual anti-counterfeiting fluorescent ink more suitable for diversified applications on different devices and various substrates, thus providing a novel approach for convenient and rapid information encryption and high security anti-counterfeiting.


Assuntos
Celulose , Grafite , Tinta , Elementos da Série dos Lantanídeos , Nanopartículas , Nitrogênio , Pontos Quânticos , Celulose/química , Nanopartículas/química , Pontos Quânticos/química , Nitrogênio/química , Grafite/química , Elementos da Série dos Lantanídeos/química , Água/química , Luminescência , Bactérias
17.
ACS Appl Bio Mater ; 7(5): 3452-3459, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723150

RESUMO

A two-photon nanoparticle probe was designed and developed based on the principle of intermolecular interaction of the aggregation-induced locally excited emission luminescence mechanism. The probe has the advantages of simple synthesis, convenient use, strong atomic economy, good biocompatibility, and photobleaching resistance. It can produce a specific and sensitive response to formaldehyde, help detect FA in normal cells and cancer cells, and is expected to become a specific detection probe for FA in vitro and in vivo.


Assuntos
Materiais Biocompatíveis , Formaldeído , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Fótons , Formaldeído/química , Formaldeído/análise , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Luminescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular
18.
Talanta ; 276: 126219, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733936

RESUMO

This study presents a potent paper-based analytical device (PAD) for quantifying various sugars using an innovative bi-nanozyme made from a 2-dimensional Fe/Ce metal-organic framework (FeCe-BTC). The MOF showed excellent bifunctional peroxidase-oxidase activities, efficiently catalyzing luminol's chemiluminescence (CL) reaction. As a peroxidase-like nanozyme, FeCe-BTC could facilitate the dissociation of hydrogen peroxide (H2O2) into hydroxyl radicals, which then oxidize luminol. Additionally, it was also discovered that when reacting with H2O2, the MOF turns into a mixed-valence MOF, and acts as an oxidase nanozyme. This activity is caused by the generated Ce4+ ions in the structure of MOF that can directly oxidize luminol. The MOF was directly synthesized on the PAD and cascaded with specific natural enzymes to establish simple, rapid, and selective CL sensors for the measurement of different sugars. A cell phone was also used to record light intensities, which were then correlated to the analyte concentration. The designed PAD showed a wide linear range of 0.1-10 mM for glucose, fructose, and sucrose, with detection limits of 0.03, 0.04, and 0.04 mM, respectively. It showed satisfactory results in food and biological samples with recovery values ranging from 95.8 to 102.4 %, which makes it a promising candidate for point-of-care (POC) testing for food control and medicinal purposes.


Assuntos
Medições Luminescentes , Luminol , Estruturas Metalorgânicas , Papel , Smartphone , Luminol/química , Estruturas Metalorgânicas/química , Medições Luminescentes/métodos , Ferro/química , Ferro/análise , Cério/química , Peroxidase/química , Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Oxirredutases/química , Oxirredutases/metabolismo , Açúcares/análise , Açúcares/química , Materiais Biomiméticos/química , Luminescência
19.
Talanta ; 276: 126202, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38743968

RESUMO

Chemiluminescence (CL) is a self-illumination phenomenon that involves the emission of light from chemical reactions, and it provides favorable spatial and temporal information on biological processes. However, it is still a great challenge to construct effective CL sensors that equip strong CL intensity, long emission wavelength, and persistent luminescence for deep tissue imaging. Here, we report a liposome encapsulated polymer dots (Pdots)-based system using catalytic CL substrates (L-012) as energy donor and fluorescent polymers and dyes (NIR 695) as energy acceptors for efficient Near-infrared (NIR) CL in vivo imaging. Thanks to the modulation of paired donor and acceptor distance and the slow diffusion of biomarker by liposome, the Pdots show a NIR emission wavelength (λ em, max = 720 nm), long CL duration (>24 h), and a high chemiluminescence resonance energy transfer efficiency (46.5 %). Furthermore, the liposome encapsulated Pdots possess excellent biocompatibility, sensitive response to H2O2, and persistent whole-body NIR CL imaging in the drug-induced inflammation and the peritoneal metastatic tumor mouse model. In a word, this NIR-II CL nanoplatform with long-lasting emission and high spatial-temporal resolution will be a concise strategy in deep tissue imaging and clinical diagnostics.


Assuntos
Raios Infravermelhos , Lipossomos , Animais , Lipossomos/química , Camundongos , Catálise , Medições Luminescentes/métodos , Imagem Óptica , Corantes Fluorescentes/química , Humanos , Polímeros/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Luminescência , Pontos Quânticos/química , Camundongos Endogâmicos BALB C
20.
Food Chem ; 452: 139549, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762939

RESUMO

The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 µg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.


Assuntos
Cádmio , Contaminação de Alimentos , Limite de Detecção , Medições Luminescentes , Cádmio/análise , Contaminação de Alimentos/análise , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Animais , Luminescência , Testes Imediatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...