Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.894
Filtrar
1.
Curr Genet ; 70(1): 9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951203

RESUMO

The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-ß-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-ß-galactopyranoside) as a substrate for ß-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.


This article describes the characterization of the S. schoenii MET17 promoter for regulated gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Reporter , Metionina , Regiões Promotoras Genéticas , Metionina/metabolismo , Metionina/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
2.
J Agric Food Chem ; 72(28): 15662-15671, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976570

RESUMO

This study determined the effects of two methionine (Met) sources at three total sulfur amino acids (TSAA) to lysine ratios (TSAA/Lys) on gut pH, digestive enzyme activity, amino acid transporter expression, and Met metabolism of broilers. The birds were randomly assigned to a 2 × 3 factorial arrangement with Met sources (dl-Met and dl-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met)) and TSAA/Lys (0.58, 0.73, and 0.88) from 1 to 21 days. The results demonstrated that dl-Met and OH-Met supported the same growth performance, but high TSAA/Lys ratio reduced the feed intake and body weight (P < 0.05). OH-Met reduced the crop chyme pH and enhanced the jejunal lipase activity (P < 0.05). ATB0,+ expression decreased with increased dl-Met levels in the duodenum; the low TSAA/Lys ratio induced a stronger mRNA expression of basolateral Met transporters. OH-Met resulted in an increase of cystathionine ß-synthase expression in the liver and a decrease in serum homocysteine levels at middle TSAA/Lys ratio compared with dl-Met treatment (P < 0.05). In conclusion, two Met sources support the same growth, but OH-Met acidified the crop chyme. The investigated transporter transcripts differed significantly along the small intestine. At the middle TSAA/Lys ratio, OH-Met showed a higher metabolic tendency of the trans-sulfuration pathway compared with dl-Met.


Assuntos
Sistemas de Transporte de Aminoácidos , Ração Animal , Galinhas , Metionina , Animais , Metionina/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ração Animal/análise , Concentração de Íons de Hidrogênio , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Masculino , Fígado/metabolismo
3.
BMC Cancer ; 24(1): 736, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879476

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary brain cancer. The treatment of GBM consists of a combination of surgery and subsequent oncological therapy, i.e., radiotherapy, chemotherapy, or their combination. If postoperative oncological therapy involves irradiation, magnetic resonance imaging (MRI) is used for radiotherapy treatment planning. Unfortunately, in some cases, a very early worsening (progression) or return (recurrence) of the disease is observed several weeks after the surgery and is called rapid early progression (REP). Radiotherapy planning is currently based on MRI for target volumes definitions in many radiotherapy facilities. However, patients with REP may benefit from targeting radiotherapy with other imaging modalities. The purpose of the presented clinical trial is to evaluate the utility of 11C-methionine in optimizing radiotherapy for glioblastoma patients with REP. METHODS: This study is a nonrandomized, open-label, parallel-setting, prospective, monocentric clinical trial. The main aim of this study was to refine the diagnosis in patients with GBM with REP and to optimize subsequent radiotherapy planning. Glioblastoma patients who develop REP within approximately 6 weeks after surgery will undergo 11C-methionine positron emission tomography (PET/CT) examinations. Target volumes for radiotherapy are defined using both standard planning T1-weighted contrast-enhanced MRI and PET/CT. The primary outcome is progression-free survival defined using RANO criteria and compared to a historical cohort with REP treated without PET/CT optimization of radiotherapy. DISCUSSION: PET is one of the most modern methods of molecular imaging. 11C-Methionine is an example of a radiolabelled (carbon 11) amino acid commonly used in the diagnosis of brain tumors and in the evaluation of response to treatment. Optimized radiotherapy may also have the potential to cover those regions with a high risk of subsequent progression, which would not be identified using standard-of-care MRI for radiotherapy planning. This is one of the first study focused on radiotherapy optimization for subgroup of patinets with REP. TRIAL REGISTRATION: NCT05608395, registered on 8.11.2022 in clinicaltrials.gov; EudraCT Number: 2020-000640-64, registered on 26.5.2020 in clinicaltrialsregister.eu. Protocol ID: MOU-2020-01, version 3.2, date 18.09.2020.


Assuntos
Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Metionina , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico , Radioisótopos de Carbono , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/diagnóstico , Glioblastoma/radioterapia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Cells ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891069

RESUMO

N-acetyl-selenomethionine (NASeLM), a representative of the selenium compounds, failed to convince in clinical studies and cell cultures that it neither inhibits cancer growth nor has a chemoprotective effect. This study aims to find out whether NASeLM shows a growth-inhibiting property compared to the carrier substance N-Acetyl-L-methionine (NALM) on two different cancer cells, namely Jurkat cells and MTC-SK cells. METHODS: Jurkat and MTC-SK cells were cultured in the absence or presence of varying concentrations (0-500 µg/mL) of NASeLM and NALM solutions. After 0, 24, 48, and 72 h, mitochondrial activity, cancer cell membrane CP levels, cell growth, and caspase-3 activity were assessed in aliquots of Jurkat and MTC-SK cells. RESULTS: Both substances, NASeLM and NALM, were similarly able to inhibit cell growth and mitochondrial activity of Jurkat cells in a concentration-dependent and time-dependent manner up to 70%. Only the determination of caspase activity showed that only NASeLM was able to increase this to almost 40% compared to the control as well as the same lack of NALM. However, the experiments on MTC-SK cells showed a clear difference in favor of NASeLM compared to NALM. While NASeLM was able to reduce cell growth to up to 55%, the same amount of NALM was only at around 15%, which turned out to be highly significant (p < 0.001). The same could also be measured for the reduction in MTC-SK mitochondrial activity. Time dependence could also be recognized: the longer both substances, NASeLM and NALM, were incubated, the higher the effect on cell growth and mitochondrial activity, in favour of NASeLM. Only NASeLM was able to increase caspase-3 activity in MTC-SK cells: at 250 µg/mL NASeLM, caspase-3 activity increased significantly to 28% after 24 and 48 h compared to the control (14%) or the same NALM concentration (14%). After 72 h, this could still increase to 37%. A further increase in the NASeLM concentration did not result in higher caspase-3 activity. CONCLUSION: NASeLM could clearly increase caspase-3 activity in both cell types, Jurkat or MTC-SK cells, and thus induce cell death. NALM and NASeLM showed a reduction in cell growth and mitochondrial activity in both cell lines: While NALM and NASeLM showed almost identical measurements on Jurkat cells, NASeLM was much more effective on MTC-SK than the non-selenium-containing carrier, indicating that it has additional anti-chemoprotective effects.


Assuntos
Proliferação de Células , Metionina , Selenometionina , Humanos , Selenometionina/farmacologia , Células Jurkat , Metionina/análogos & derivados , Metionina/farmacologia , Metionina/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
5.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892381

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. Some patients with MAFLD develop metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver fibrosis. However, the molecular mechanisms underlying this progression remain unknown, and no effective treatment for MASH has been developed so far. In this study, we performed a longitudinal detailed analysis of mitochondria in the livers of choline-deficient, methionine-defined, high-fat-diet (CDAHFD)-fed mice, which exhibited a MASH-like pathology. We found that FoF1-ATPase activity began to decrease in the mitochondria of CDAHFD-fed mice prior to alterations in the activity of mitochondrial respiratory chain complex, almost at the time of onset of liver fibrosis. In addition, the decrease in FoF1-ATPase activity coincided with the accelerated opening of the mitochondrial permeability transition pore (PTP), for which FoF1-ATPase might be a major component or regulator. As fibrosis progressed, mitochondrial permeability transition (PT) induced in CDAHFD-fed mice became less sensitive to cyclosporine A, a specific PT inhibitor. These results suggest that episodes of fibrosis might be related to the disruption of mitochondrial function via PTP opening, which is triggered by functional changes in FoF1-ATPase. These novel findings could help elucidate the pathogenesis of MASH and lead to the development of new therapeutic strategies.


Assuntos
Deficiência de Colina , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Deficiência de Colina/metabolismo , Deficiência de Colina/complicações , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Metionina/deficiência , Metionina/metabolismo
6.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928221

RESUMO

Methionine oxidation to the sulfoxide form (MSox) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MSox site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MSox across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states. Using this model, we analyzed age-, sex-, and disease-dependent MSox speciation in the mouse hippocampus. In addition, we explored the chemical stability and statistical variance of oxidized peptide signals to understand the needed power for MSox-based proteome studies. Our results identify mitochondrial and glycolytic pathway targets with increases in MSox with age as well as neuroinflammatory targets accumulating MSox with AD in proteome studies of the mouse hippocampus. Further, this paper establishes a foundation for reproducible and rigorous experimental MSox-omics appropriate for novel target identification in biological discovery and for biomarker analysis in ROS and other oxidation-linked diseases.


Assuntos
Envelhecimento , Doença de Alzheimer , Glicólise , Hipocampo , Metionina , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteômica , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteômica/métodos , Metionina/metabolismo , Metionina/análogos & derivados , Envelhecimento/metabolismo , Masculino , Feminino , Oxirredução , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças
7.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38864484

RESUMO

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Assuntos
Neoplasias Esofágicas , Cromatografia Gasosa-Espectrometria de Massas , Metionina , Compostos Orgânicos Voláteis , Metionina/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Linhagem Celular Tumoral , Microextração em Fase Sólida , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900797

RESUMO

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Assuntos
Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes , Metionina , Metionina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linhagem Celular Tumoral , Epigênese Genética , Epigenômica/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Proliferação de Células , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Reprogramação Celular/genética
9.
Sci Rep ; 14(1): 14900, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942903

RESUMO

Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.


Assuntos
Amidoidrolases , Proliferação de Células , Citosol , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Citosol/metabolismo , Camundongos , Linhagem Celular Tumoral , Amidoidrolases/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antígeno CD24/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Progressão da Doença , Metionina/metabolismo , Metionina/análogos & derivados
10.
Sci Rep ; 14(1): 14854, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937567

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP) 13C MRI provides a unique view of the metabolic microenvironment, with potential relevance for early diagnosis of liver disease. Previous studies have detected changes in HP 13C pyruvate to lactate conversion, catalyzed by lactate dehydrogenase (LDH), with experimental liver injury. HP ∝ -ketobutyrate ( ∝ KB) is a close molecular analog of pyruvate with modified specificity for LDH isoforms, specifically attenuated activity with their LDHA-expressed subunits that dominate liver parenchyma. Building on recent results with pyruvate, we investigated HP ∝ KB in methionine-choline deficient (MCD) diet as a model of early-stage NASH. Similarity of results between this new agent and pyruvate (~ 50% drop in cytoplasmic reducing capacity), interpreted together with gene expression data from the model, suggests that changes are mediated through broad effects on intermediary metabolism. Plausible mechanisms are depletion of the lactate pool by upregulation of gluconeogenesis (GNG) and pentose phosphate pathway (PPP) flux, and a possible shift toward increased lactate oxidation. These changes may reflect high levels of oxidative stress and/or shifting macrophage populations in NASH.


Assuntos
Isótopos de Carbono , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Imageamento por Ressonância Magnética/métodos , Fígado/metabolismo , Fígado/patologia , Fígado/diagnóstico por imagem , Camundongos , Ácido Pirúvico/metabolismo , Masculino , Metionina/metabolismo , Gluconeogênese , Ácido Láctico/metabolismo , Modelos Animais de Doenças
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928022

RESUMO

Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.


Assuntos
Botrytis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Metionina , Doenças das Plantas , Reguladores de Crescimento de Plantas , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Metionina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
12.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864402

RESUMO

Fetal programming research conducted in sheep has reported sexually dimorphic responses on growth of the progeny born to in-utero methionine or omega-3 fatty acids supplementation. However, the biological mechanism behind the nutrient by sex interaction as a source of variation in offspring body weight is still unknown. A high-throughput RNA sequencing data of hypothalamus samples from 17 lambs were used in the current study to identify differentially expressed genes (DEGs) between males and females born to dams supplemented with different nutrients during late-gestation. Ewes received a basal diet without omega-3 fatty acids or methionine supplementation as the control (CONT); omega-3 fatty acids supplementation (FAS), or methionine supplementation (METS). A list of regulated genes was generated. Data were compared as CONT vs. FAS and CONT vs. METS. For CONT vs. METS, a treatment by sex interaction was found (adjusted P-value < 0.05) on 121 DEGs (112 upregulated and 9 downregulated) on female lambs born to METS compared with METS males. Importantly, with the sex interaction term, more than 100 genes were upregulated in female lamb's hypothalamuses born to METS. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) were performed using the DEGs from female lambs. Terms under biological process (related to morphogenesis, organism, and tissue development), cellular component (related to chromatin, extracellular components), and molecular function (involved in chromatin structure and transcription and factors linked to binding DNA) were presented (adjusted P-value < 0.05) for GO. For the IPA, the top-scoring network was developmental disorder, endocrine system development and function, and organ morphology. Only a few differences were observed in the comparison between the interaction of sex and treatment for the CONT vs. FAS comparison. The markedly increased number of DEGs substantially involved in developmental and growth processes indicates the extent to which maternal methionine supplementation causes the sexually dimorphic effects observed in the offspring.


Feeding dams during gestation affects the development of the offspring for their entire life. The objective of the current experiment was to evaluate the changes of the transcriptome in the hypothalamus of the offspring lambs born from dams supplemented with (i) a control diet (without lipids or methionine supplementation), (ii) an omega-3 fatty acid supplementation, or (iii) a methionine supplementation. The supplementation took place in the last third of gestation and the hypothalamus of male and female offspring was collected after being on a fattening diet for 54 d. Hypothalamus samples were used to extract RNA and analyzed using RNA sequencing. There was an interaction due to sex and methionine supplementation. The pathways that were modified were chromatin structure, developmental processes, and organ morphology. The modification observed on these pathways could explain the sex by treatment interaction differences previously observed in growth. There were few sex by omega-3 fatty acid interactions on the hypothalamus transcriptome. Therefore, the sexual dimorphism observed by methionine supplementation may be regulated by the hypothalamus.


Assuntos
Peso Corporal , Dieta , Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Hipotálamo , Metionina , Animais , Feminino , Metionina/administração & dosagem , Metionina/farmacologia , Masculino , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Ovinos/fisiologia , Ovinos/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Gravidez , Dieta/veterinária , Ração Animal/análise , Transcriptoma , Perfilação da Expressão Gênica , Caracteres Sexuais , Fatores Sexuais , Fenômenos Fisiológicos da Nutrição Animal
13.
Zhonghua Yi Xue Za Zhi ; 104(24): 2256-2259, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38901983

RESUMO

The clinical manifestations, biochemical and metabolic data, genetic variations and treatment data of children with MTHFR gene variant induced hyperhomocysteinemia admitted to Hangzhou Children's Hospital and Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from November 2015 to September 2021 were analysed retrospectively. A total of 15 pediatric patients were included, including 10 males and 5 females, with onset ages ranging from 6 days to 18 years old and confirmed ages ranging from 40 days to 18 years old. One confirmed case was detected through neonatal screening, and the remaining 14 cases were all diagnosed through genetic diagnosis after onset. The main clinical manifestations were feeding difficulties, hypotonia, epilepsy, developmental delay. All patients had elevated levels of blood homocysteine, with blood homocysteine levels before and after treatment being (151.46±57.44) µmol/L and (69.96±32.88) µmol/L, significantly decreased after treatment compared with before treatment, with a statistically significant difference (P<0.001). The blood methionine level before the treatment was 9.40 (6.20, 11.96) µmol/L, normal or slightly decreased compared to the reference range. The methionine level returned to normal after treatment. A total of 19 MTHFR gene variants were detected, with 6 being unreported variants and 13 being known variants. c.1316C>T (p.L439P) was the most common variant(16.6%,5/30). All the patients had varied neurological damages, with 7 patients improved after metabolic therapy by carnitine and folinic acid, 8 patients experiencing developmental delay, and 1 patient experiencing frequent epilepsy. The clinical manifestations of MTHFR gene variation-related hyperhomocysteinemia are complex and variable. Early-onset and homozygous variants often have a poor prognosis. Blood homocysteine, blood amino acid analysis, serum total homocysteine assay and gene testing are helpful for early diagnosis.


Assuntos
Homocisteína , Hiper-Homocisteinemia , Metilenotetra-Hidrofolato Redutase (NADPH2) , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Hiper-Homocisteinemia/genética , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Lactente , Estudos Retrospectivos , Homocisteína/sangue , Recém-Nascido , Mutação , Metionina
14.
Hepatol Commun ; 8(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934719

RESUMO

BACKGROUND: MASH is a common clinical disease that can lead to advanced liver conditions, but no approved pharmacotherapies are available due to an incomplete understanding of its pathogenesis. Damaged DNA binding protein 1 (DDB1) participates in lipid metabolism. Nevertheless, the function of DDB1 in MASH is unclear. METHODS: Clinical liver samples were obtained from patients with MASH and control individuals by liver biopsy. Hepatocyte-specific Ddb1-knockout mice and liver Hmgb1 knockdown mice were fed with a methionine-and choline-deficient diet to induce MASH. RESULTS: We found that the expression of DDB1 in the liver was significantly decreased in MASH models. Hepatocyte-specific ablation of DDB1 markedly alleviated methionine-and choline-deficient diet-induced liver steatosis but unexpectedly exacerbated inflammation and fibrosis. Mechanistically, DDB1 deficiency attenuated hepatic steatosis by downregulating the expression of lipid synthesis and uptake genes. We identified high-mobility group box 1 as a key candidate target for DDB1-mediated liver injury. DDB1 deficiency upregulated the expression and extracellular release of high-mobility group box 1, which further increased macrophage infiltration and activated HSCs, ultimately leading to the exacerbation of liver inflammation and fibrosis. CONCLUSIONS: These data demonstrate the independent regulation of hepatic steatosis and injury in MASH. These findings have considerable clinical implications for the development of therapeutic strategies for MASH.


Assuntos
Proteínas de Ligação a DNA , Fígado Gorduroso , Proteína HMGB1 , Hepatócitos , Cirrose Hepática , Camundongos Knockout , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Masculino , Deficiência de Colina/complicações , Modelos Animais de Doenças , Metionina/deficiência , Fígado/patologia , Fígado/metabolismo , Metabolismo dos Lipídeos
15.
Psychoneuroendocrinology ; 167: 107106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943720

RESUMO

Brain-Derived Neurotrophic Factor (BDNF) is implicated in extinction learning, which is a primary mechanism of exposure therapy for posttraumatic stress disorder (PTSD). Brief aerobic exercise has been shown to promote BDNF release and augment extinction learning. On the premise that the Val allele of the BDNF Val66Met polymorphism facilitates greater release of BDNF, this study examined the extent to which the Val allele of the BDNF polymorphism predicted treatment response in PTSD patients who underwent exposure therapy combined with aerobic exercise or passive stretching. PTSD patients (N = 85) provided saliva samples in order to extract genomic DNA to identify Val/Val and Met carriers of the BDNF Val66Met genotype, and were assessed for PTSD severity prior to and following a 9-week course of exposure therapy combined with aerobic exercise or stretching. The sample comprised 52 Val/Val carriers and 33 Met carriers. Patients with the BDNF high-expression Val allele display greater reduction of PTSD symptoms at posttreatment than Met carriers. Hierarchical regression analysis indicated that greater PTSD reduction was specifically observed in Val/Val carriers who received exposure therapy in combination with the aerobic exercise. This finding accords with animal and human evidence that the BDNF Val allele promotes greater extinction learning, and that these individuals may benefit more from exercise-augmented extinction. Although preliminary, this result represents a possible avenue for augmented exposure therapy in patients with the BDNF Val allele.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Exercício Físico , Terapia Implosiva , Polimorfismo de Nucleotídeo Único , Transtornos de Estresse Pós-Traumáticos , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/terapia , Masculino , Feminino , Adulto , Projetos Piloto , Terapia Implosiva/métodos , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Resultado do Tratamento , Genótipo , Terapia por Exercício/métodos , Alelos , Terapia Combinada , Metionina/genética
16.
Neurosci Lett ; 836: 137874, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38857696

RESUMO

Clusterin is a secreted glycoprotein that participates in multiple physiological processes through its chaperon function. In Alzheimer's disease, the brain functions under an increased oxidative stress condition that causes an elevation of protein oxidation, resulting in enhanced pathology. Accordingly, it is important to determine the type of human brain cells that are mostly prone to methionine oxidation in Alzheimer's disease and specifically monitoring the methionine-oxidation levels of clusterin in human and mice brains and its effect on clusterin's function. We analyzed the level of methionine sulfoxide (MetO)-clusterin in these brains, using a combination of immunoprecipitation and Western-blott analyses. Also, we determine the effect of methionine oxidation on clusterin ability to bind beta-amyloid, in vitro, using calorimetric assay. Our results show that human neurons and astrocytes of Alzheimer's disease brains are mostly affected by methionine oxidation. Moreover, MetO-clusterin levels are elevated in postmortem Alzheimer's disease human and mouse brains in comparison to controls. Finally, oxidation of methionine residues of purified clusterin reduced its binding efficiency to beta-amyloid. In conclusion, we suggest that methionine oxidation of brain-clusterin is enhanced in Alzheimer's disease and that this oxidation compromises its chaperon function, leading to exacerbation of beta-amyloid's toxicity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Encéfalo , Clusterina , Metionina , Oxirredução , Clusterina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Metionina/metabolismo , Metionina/análogos & derivados , Humanos , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Astrócitos/metabolismo , Camundongos , Neurônios/metabolismo , Ligação Proteica , Masculino , Idoso
17.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944421

RESUMO

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Assuntos
Antígeno B7-H1 , Liases de Carbono-Enxofre , Neoplasias Colorretais , Metionina , Proteínas Recombinantes , Humanos , Liases de Carbono-Enxofre/metabolismo , Metionina/farmacologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Proteínas Recombinantes/farmacologia , Células HCT116
18.
Cancer Genomics Proteomics ; 21(4): 399-404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944428

RESUMO

BACKGROUND/AIM: BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction. MATERIALS AND METHODS: POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions. RESULTS: Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells. CONCLUSION: The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , DNA Polimerase teta , Metionina , Mutação , Humanos , Metionina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Reparo do DNA , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
19.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834972

RESUMO

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Assuntos
Antioxidantes , Glicólise , Fígado , Metionina , Animais , Fígado/metabolismo , Fígado/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacologia , Metionina/administração & dosagem , Metionina/metabolismo , Lisina/metabolismo , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Ração Animal/análise , Masculino
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 575-583, 2024 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-38926373

RESUMO

OBJECTIVES: To study the characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome (OSAHS). METHODS: A total of 31 children aged 4-6 years with OSAHS were prospectively enrolled as the test group, and 24 healthy children aged 4-6 years were included as the control group. Relevant clinical indicators were recorded. Fecal samples were collected, and non-targeted metabolomics analysis using liquid chromatography-mass spectrometry was performed to detect all metabolites. RESULTS: A total of 206 metabolites were detected, mainly amino acids and their derivatives. There was a significant difference in the overall composition of intestinal metabolites between the test and control groups (P<0.05). Eighteen different metabolites were selected, among which six (N-acetylmethionine, L-methionine, L-lysine, DL-phenylalanine, L-tyrosine, and L-isoleucine) had receiver operating characteristic curve areas greater than 0.7 for diagnosing OSAHS. Among them, N-acetylmethionine had the largest area under the curve, which was 0.807, with a sensitivity of 70.83% and a specificity of 80.65%. Correlation analysis between different metabolites and clinical indicators showed that there were positive correlations between the degree of tonsil enlargement and enterolactone, between uric acid and phenylacetaldehyde, between blood glucose and acetylmethionine, and between cholesterol and 9-bromodiphenyl and procaine (P<0.05). There were negative correlations between the degree of tonsil enlargement and N-methyltyramine, aspartate aminotransferase and indolepropionic acid and L-isoleucine, between alanine aminotransferase and DL-phenylalanine, between indolepropionic acid and L-isoleucine, between uric acid and hydroxyquinoline, and between urea nitrogen and N,N-dicyclohexylurea (P<0.05). The metabolic functional pathways affected by differential metabolites mainly included riboflavin metabolism, arginine and proline metabolism, pantothenic acid and coenzyme A biosynthesis, cysteine and methionine metabolism, lysine degradation and glutathione metabolism. CONCLUSIONS: Intestinal metabolites and metabolic functions are altered in children aged 4-6 years with OSAHS, primarily involving amino acid metabolism disorders. The screened differential intestinal metabolites have potential screening and diagnostic value as biomarkers for OSAHS.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Criança , Masculino , Pré-Escolar , Feminino , Apneia Obstrutiva do Sono/metabolismo , Intestinos , Metionina/metabolismo , Metionina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA