Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.793
Filtrar
1.
Front Immunol ; 15: 1351777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576622

RESUMO

Introduction: Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods: Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results: Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion: Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Interleucina-17 , Monitorização Imunológica , Mucosa Respiratória
2.
Nat Commun ; 15(1): 2835, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565540

RESUMO

Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.


Assuntos
Neoplasias , Obesidade , Humanos , Animais , Camundongos , Monitorização Imunológica , Obesidade/etiologia , Dieta , Fatores de Risco
6.
Signal Transduct Target Ther ; 9(1): 28, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38320992

RESUMO

Systemic immune monitoring is a crucial clinical tool for disease early diagnosis, prognosis and treatment planning by quantitative analysis of immune cells. However, conventional immune monitoring using flow cytometry faces huge challenges in large-scale sample testing, especially in mass health screenings, because of time-consuming, technical-sensitive and high-cost features. However, the lack of high-performance detection platforms hinders the development of high-throughput immune monitoring technology. To address this bottleneck, we constructed a generally applicable DNA framework signal amplification platform (DSAP) based on post-systematic evolution of ligands by exponential enrichment and DNA tetrahedral framework-structured probe design to achieve high-sensitive detection for diverse immune cells, including CD4+, CD8+ T-lymphocytes, and monocytes (down to 1/100 µl). Based on this advanced detection platform, we present a novel high-throughput immune-cell phenotyping system, DSAP, achieving 30-min one-step immune-cell phenotyping without cell washing and subset analysis and showing comparable accuracy with flow cytometry while significantly reducing detection time and cost. As a proof-of-concept, DSAP demonstrates excellent diagnostic accuracy in immunodeficiency staging for 107 HIV patients (AUC > 0.97) within 30 min, which can be applied in HIV infection monitoring and screening. Therefore, we initially introduced promising DSAP to achieve high-throughput immune monitoring and open robust routes for point-of-care device development.


Assuntos
Infecções por HIV , Humanos , Monitorização Imunológica , Linfócitos T CD8-Positivos , Monócitos , DNA/uso terapêutico
7.
Environ Int ; 184: 108493, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350257

RESUMO

Defective erythropoiesis is one of the causes of anemia and leukemia. However, the mechanisms underlying defective erythropoiesis under a low-dose environment of benzene are poorly understood. In the present study, multiple omics (transcriptomics and metabolomics) and methods from epidemiology to experimental biology (e.g., benzene-induced (WT and HIF-1α + ) mouse, hiPSC-derived HSPCs) were used. Here, we showed that erythropoiesis is more easily impacted than other blood cells, and the process is reversible, which involves HIF-1 and NF-kB signaling pathways in low-level benzene exposure workers. Decreased HIF-1α expression in benzene-induced mouse bone marrow resulted in DNA damage, senescence, and apoptosis in BMCs and HSCs, causing disturbances in iron homeostasis and erythropoiesis. We further revealed that HIF-1α mediates CCL3/macrophage-related immunosurveillance against benzene-induced senescent and damaged cells and contributes to iron homeostasis. Mechanistically, we showed that m6A modification is essential in this process. Benzene-induced depletion of m6A promotes the mRNA stability of gene NFKBIA and regulates the NF-κB/CCL3 pathway, which is regulated by HIF-1α/METTL3/YTHDF2. Overall, our results identified an unidentified role for HIF-1α, m6A, and the NF-kB signaling machinery in erythroid progenitor cells, suggesting that HIF-1α/METTL3/YTHDF2-m6A/NF-κB/CCL3 axis may be a potential prevention and therapeutic target for chronic exposure of humans to benzene-associated anemia and leukemia.


Assuntos
Anemia , Leucemia , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Benzeno/toxicidade , Monitorização Imunológica , Ferro , Metiltransferases
8.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321204

RESUMO

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Assuntos
Leucemia Mieloide Aguda , 60645 , Humanos , Monitorização Imunológica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco , Células-Tronco Neoplásicas/metabolismo
9.
Life Sci ; 342: 122528, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408406

RESUMO

The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.


Assuntos
Neoplasias , Humanos , Monitorização Imunológica , Neoplasias/tratamento farmacológico , Imunoterapia , Terapia de Imunossupressão , Imunidade , Microambiente Tumoral
10.
EMBO Rep ; 25(2): 471-488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216787

RESUMO

Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.


Assuntos
Neoplasias , Humanos , Monitorização Imunológica , Neoplasias/patologia , Metabolismo Energético , Redes e Vias Metabólicas , Microambiente Tumoral
12.
Nat Nanotechnol ; 19(3): 281-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286876

RESUMO

Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.


Assuntos
Neoplasias , Humanos , Monitorização Imunológica , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia , Imunidade
13.
Cancer Gene Ther ; 31(1): 158-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990063

RESUMO

MSCs (mesenchymal stem cells), responsible for tissue repair, rarely undergo cell fusion with somatic cells. Here, we show that ~5% of bladder cancer cells (UMUC-3) fuses with bone marrow-derived MSC (BM-MSC) in co-culture and maintains high tumorigenicity. In eleven fusion cell clones that have been established, Mb-scale deletions carried by the bladder cancer cells are mostly absent in the fusion cells, but copy number gains contributed by the cancer cells have stayed. Fusion cells exhibit increased populations of mitotic cells with 3-polar spindles, indicative of genomic instability. They grow faster in vitro and exhibit higher colony formation in anchorage-independent growth assay in soft agar than the parent UMUC-3 does. Fusion cells develop tumors, after 4 weeks of time lag, as efficiently as the parent UMUC-3 does in xenograft experiments. 264 genes are identified whose expression is specifically altered in the fusion cells. Many of them are interferon-stimulated genes (ISG), but are activated in a manner independent of interferon. Among them, we show that PD-L1 is induced in fusion cells, and its knockout decreases tumorigenesis in a xenograft model. PD-L1 is induced in a manner independent of STAT1 known to regulate PD-L1 expression, but is regulated by histone modification, and is likely to inhibit phagocytosis by PD1-expressing macrophages, thus protecting cancer cells from immunological attacks. The fusion cells overexpress multiple cytokines including CCL2 that cause tumor progression by converting infiltrating macrophages to tumor-associated-macrophage (TAM). The results present mechanisms of how cell fusion promotes tumorigenesis, revealing a novel link between cell fusion and PD-L1, and underscore the efficacy of cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Fusão Celular , Monitorização Imunológica , Interferons , Carcinogênese , Linhagem Celular Tumoral
14.
Clin Infect Dis ; 78(2): 312-323, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37738676

RESUMO

BACKGROUND: The use of assays detecting cytomegalovirus (CMV)-specific T cell-mediated immunity may individualize the duration of antiviral prophylaxis after transplantation. METHODS: In this randomized trial, kidney and liver transplant recipients from 6 centers in Switzerland were enrolled if they were CMV-seronegative with seropositive donors or CMV-seropositive receiving antithymocyte globulins. Patients were randomized to a duration of antiviral prophylaxis based on immune monitoring (intervention) or a fixed duration (control). Patients in the control group were planned to receive 180 days (CMV-seronegative) or 90 days (CMV-seropositive) of valganciclovir. Patients were assessed monthly with a CMV ELISpot assay (T-Track CMV); prophylaxis in the intervention group was stopped if the assay was positive. The co-primary outcomes were the proportion of patients with clinically significant CMV infection and reduction in days of prophylaxis. Between-group differences were adjusted for CMV serostatus. RESULTS: Overall, 193 patients were randomized (92 in the immune-monitoring group and 101 in the control group), of whom 185 had evaluation of the primary outcome (87 and 98 patients). CMV infection occurred in 26 of 87 (adjusted percentage, 30.9%) in the immune-monitoring group and in 32 of 98 (adjusted percentage, 31.1%) in the control group (adjusted risk difference, -0.1; 95% confidence interval [CI], -13.0% to 12.7%; P = .064). The duration of prophylaxis was shorter in the immune-monitoring group (adjusted difference, -26.0 days; 95%, CI, -41.1 to -10.8 days; P < .001). CONCLUSIONS: Immune monitoring resulted in a significant reduction of antiviral prophylaxis, but we were unable to establish noninferiority of this approach on the co-primary outcome of CMV infection. CLINICAL TRIALS REGISTRATION: NCT02538172.


Assuntos
Infecções por Citomegalovirus , Transplante de Órgãos , Humanos , Citomegalovirus , Antivirais/uso terapêutico , Monitorização Imunológica , Infecções por Citomegalovirus/diagnóstico , Transplantados , Transplante de Órgãos/efeitos adversos , Ganciclovir/uso terapêutico
15.
Blood ; 143(1): 57-63, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37824808

RESUMO

ABSTRACT: Bruton tyrosine kinase inhibitors (BTKis) that target B-cell receptor signaling have led to a paradigm shift in chronic lymphocytic leukemia (CLL) treatment. BTKis have been shown to reduce abnormally high CLL-associated T-cell counts and the expression of immune checkpoint receptors concomitantly with tumor reduction. However, the impact of BTKi therapy on T-cell function has not been fully characterized. Here, we performed longitudinal immunophenotypic and functional analysis of pretreatment and on-treatment (6 and 12 months) peripheral blood samples from patients in the phase 3 E1912 trial comparing ibrutinib-rituximab with fludarabine, cyclophosphamide, and rituximab (FCR). Intriguingly, we report that despite reduced overall T-cell counts; higher numbers of T cells, including effector CD8+ subsets at baseline and at the 6-month time point, associated with no infections; and favorable progression-free survival in the ibrutinib-rituximab arm. Assays demonstrated enhanced anti-CLL T-cell killing function during ibrutinib-rituximab treatment, including a switch from predominantly CD4+ T-cell:CLL immune synapses at baseline to increased CD8+ lytic synapses on-therapy. Conversely, in the FCR arm, higher T-cell numbers correlated with adverse clinical responses and showed no functional improvement. We further demonstrate the potential of exploiting rejuvenated T-cell cytotoxicity during ibrutinib-rituximab treatment, using the bispecific antibody glofitamab, supporting combination immunotherapy approaches.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Rituximab , Monitorização Imunológica , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Imunoterapia , Linfócitos T CD8-Positivos
16.
Methods Mol Biol ; 2713: 337-346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639134

RESUMO

Intravital microscopy is an invaluable tool to study in real time the dynamic behavior of leukocytes in vivo. We describe herein a simple protocol for time-lapse imaging of tissue-resident macrophages in intact kidney, liver, and spleen in live mice. This method can be used in any commercially available inverted confocal microscope, doesn't require expensive lasers or optics, exhibits minimal organ perturbation, photo bleaching, or phototoxicity, and, hence, it enables the study of tissue-resident macrophages in situ and in vivo under steady state and inflammation.


Assuntos
Ácido Hipocloroso , Microscopia Intravital , Animais , Camundongos , Monitorização Imunológica , Inflamação , Macrófagos
18.
ACS Appl Mater Interfaces ; 15(43): 50047-50057, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856877

RESUMO

Immunomodulation therapies have attracted immense interest recently for the treatment of immune-related diseases, such as cancer and viral infections. This new wave of enthusiasm for immunomodulators, predominantly revolving around cytokines, has spurred emerging needs and opportunities for novel immune monitoring and diagnostic tools. Considering the highly dynamic immune status and limited window for therapeutic intervention, precise real-time detection of cytokines is critical to effectively monitor and manage the immune system and optimize the therapeutic outcome. The clinical success of such a rapid, sensitive, multiplex immunoanalytical platform further requires the system to have ease of integration and fabrication for sample sparing and large-scale production toward massive parallel analysis. In this article, we developed a nanoplasmonic bioink-based, label-free, multiplex immunosensor that can be readily "written" onto a glass substrate via one-step calligraphy patterning. This facile nanolithography technique allows programmable patterning of a minimum of 3 µL of nanoplasmonic bioink in 1 min and thus enables fabrication of a nanoplasmonic microarray immunosensor with 2 h simple incubation. The developed immunosensor was successfully applied for real-time, parallel detection of multiple cytokines (e.g., interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-ß)) in immunomodulated macrophage samples. This integrated platform synergistically incorporates the concepts of nanosynthesis, nanofabrication, and nanobiosensing, showing great potential in the scalable production of label-free multiplex immunosensing devices with superior analytical performance for clinical applications in immunodiagnostics and immunotherapy.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Monitorização Imunológica , Imunoensaio/métodos , Citocinas/análise
20.
Front Immunol ; 14: 1254128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841269

RESUMO

Introduction: Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results: Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion: Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier: DRKS00029110; URL: http://apps.who.int/trialsearch/.


Assuntos
COVID-19 , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Monitorização Imunológica , SARS-CoV-2 , Vacinas contra COVID-19 , Leucócitos Mononucleares , Linfócitos T , Anticorpos Monoclonais Humanizados/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...